Skip to Content

Tethered to Silicon

Nanotechnology

Silicon is at the heart of today’s computer microchips. Making faster and cheaper computers means carving vanishingly small transistors into silicon chips-a task that is becoming increasingly difficult and expensive. One potential solution is to use individual organic molecules, which are orders of magnitude smaller than today’s transistors, on a silicon surface to do electronic switching and storage.

Making such silicon-organic hybrids, however, poses a very, very small problem-how do you put the molecules exactly where you want them? Electrical engineers at the University of Illinois at Urbana-Champaign have now found a way to attach individual organic molecules to silicon with atomic precision, using the tip of a scanning tunneling microscope.

First the researchers deposit a layer of hydrogen, one atom thick, on the silicon surface; then they use the microscope’s tip to pluck off individual hydrogen atoms in a desired pattern. The result, says Joe Lyding, professor of electrical and computer engineering at Illinois, is “a dangling silicon bond [where the hydrogen atom was] that is very reactive.” Various organic molecules can then be sprayed on the surface, where they will attach themselves only to the “dangling bonds.”

So far, Lyding and his graduate student Mark Hersam have fabricated simple patterns-columns and a V-shape-by spraying on molecules such as buckyballs (a soccerball-shaped 60-carbon molecule that many researchers believe has promise in electronics). Lyding envisions that the technique could eventually lead to hybrid silicon chips with ultrafast molecular switching and storage arrays. But, he adds: “In a sense this is uncharted territory. Nobody has placed individual molecules into atomically precise arrays on silicon before.”

Keep Reading

Most Popular

individual aging affects covid outcomes concept
individual aging affects covid outcomes concept

Anti-aging drugs are being tested as a way to treat covid

Drugs that rejuvenate our immune systems and make us biologically younger could help protect us from the disease’s worst effects.

close up of baby with a bottle
close up of baby with a bottle

The baby formula shortage has birthed a shady online marketplace

Desperate parents just want to feed their babies. They’re having to contend with misinformation, price gouging, and scams along the way.

"Olive Garden" NFTs concept
"Olive Garden" NFTs concept

I tried to buy an Olive Garden NFT. All I got was heartburn.

Our newest issue spells out what you need to know about the dizzying world of digital money.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.