Skip to Content

Boron vs. Cancer

Biomedical researchers would like to be able to deliver chemicals directly to a cell nucleus-cancer therapy being one reason. UCLA chemist Fred Hawthorne may have discovered a chemical “roach motel” that provides entry to but no exit from the nucleus. He found the passageway while trying to get boron-rich compounds into cells in studies of a cancer treatment called boron neutron capture therapy (BNCT). In BNCT, boron atoms interact with neutron beams to create an unstable isotope that blows apart, as if the neutron had tripped a landmine inside the cell.

Hawthorne has designed novel, small molecules called nido-carboranyl oligomeric phosphate diesters-nido-OPDs-that carry boron into cell interiors more effectively than before. Although Hawthorne expected that the small nido-OPDs molecules would diffuse in and out of the nucleus, he found that they accumulated; once the molecules checked in, they didn’t check out. Most were still present in the nucleus 24 hours later, a finding that could help make BNCT a much more effective cancer treatment in the future.

Keep Reading

Most Popular

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

It’s time to retire the term “user”

The proliferation of AI means we need a new word.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

Sam Altman says helpful agents are poised to become AI’s killer function

Open AI’s CEO says we won’t need new hardware or lots more training data to get there.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.