Skip to Content

Intelligent Self-Assembly

March 1, 2000

One dream of scientists making ultrasmall devices is coaxing materials to spontaneously form structures on a scale of micrometers, even nanometers. (A nanometer is one billionth of a meter.) The problem is how to control the location and orientation of structures made by this “self-assembly.” Now a group of researchers at Princeton University may have stumbled across one solution: a way to form precise arrays of tiny pillars exactly where you want them. By providing a potentially cheap and easy method to make tiny structures, the technique could eventually lead to such things as even smaller integrated circuits and a simpler way to sort DNA molecules.

Researchers in the lab of Stephen Chou, professor of electrical engineering, were working on a fabrication method using a mask to imprint nanometer-scale patterns on a polymer film. In a surprising result, they found that when microscopic particles of dust prevented the mask from contacting the polymer, micrometer-sized columns spontaneously formed in neat arrays under the protruding parts of the mask. Chou says he still doesn’t know exactly why the pillars form. But he quickly realized it could be a much more controllable method to self-assemble tiny structures.

“The power of the method,” says Chou, “is that it puts intelligence in self-assembly, and it could work for almost any [liquid] materials.” Chou is working on ways to make organic light-emitting devices used in flat-panel displays in which each pixel consists of a cluster of tiny pillars-a result that would greatly improve the reliability and color reproduction of the displays. Chou also suspects that the ultrasmall pillars could be used to form interconnects in nanoscale electronic devices.

Keep Reading

Most Popular

VR is as good as psychedelics at helping people reach transcendence

On key metrics, a VR experience elicited a response indistinguishable from subjects who took medium doses of LSD or magic mushrooms.

This nanoparticle could be the key to a universal covid vaccine

Ending the covid pandemic might well require a vaccine that protects against any new strains. Researchers may have found a strategy that will work.

How do strong muscles keep your brain healthy?

There’s a robust molecular language being spoken between your muscles and your brain.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.