Skip to Content

Getting Active

New ceramics get smarter, tougher.

“Smart materials” are already a big hit in sports. In baseball, for instance, new aluminum bats can now quiet the “bees” a player feels when hitting a ball off the handle. Likewise, smart skis can damp vibrations as needed. The “active” part of these sporting goods is a credit-card-sized wafer that uses quirky but well-studied materials called piezoelectrics. These compounds convert mechanical stresses, such as vibrations, into an electric signal (which can be harmlessly shunted), or, conversely, change shape or size in response to electricity.

But what if researchers could find ways to make the entire product active, rather than just a discrete embedded device? That could mean smart helicopter rotors or airplane wings that twist on command, changing shapes to reduce vibrations and noise. Key to that is finding active materials that are highly responsive and yet tough enough to form structural parts.

Researchers may have come a step closer to achieving that, as several groups of materials scientists, including ones at Pennsylvania State University and MIT, have identified “single-crystal” piezoelectric ceramics that are far more active than conventional materials. The MIT group, headed by Yet-Ming Chiang, a professor of materials science, and Nesbitt Hagood, director of the Institute’s Active Materials and Structures Lab, has now made novel single-crystal piezoceramics that can be easily made into fibers-a critical step to fabricating active composites that could be used to make entire structures smart.

Each type of the single-crystal materials has advantages. The MIT piezoceramics do not contain lead, which means they are less toxic and could be used in biological applications. The Penn State materials are more responsive but are lead-based and have not been made into fibers.

Nesbitt and his co-workers first developed active fiber composites several years ago using conventional piezo materials. The single-crystal piezos, however, could make the composites far cheaper and more practical, says Aaron Bent, founder of Continuum Control, a Cambridge, Mass.-based startup trying to commercialize the composites.

The MIT scientists hope to make an active fiber composite using the single-crystal piezoceramics within 18 months.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

Google DeepMind’s new generative model makes Super Mario–like games from scratch

Genie learns how to control games by watching hours and hours of video. It could help train next-gen robots too.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.