Skip to Content

A Tale of Comets–In Cells

October 1, 1997

Be the problem tuberculosis, pneumonia, or simply children’s ear infections, antibiotic-resistant strains of bacteria responsible for such diseases continue to proliferate. Challenged by this public-health dilemma, scientists are searching for new ways to combat resilient bugs. Recognizing that one possible approach is to block their movement, cellular microbiologists are now monitoring bacterial pathways within host cells with a surprisingly familiar aid-video cameras.

In work as a research fellow at the MIT-affiliated Whitehead Institute for Biomedical Research, Julie A. Theriot has focused on the movement of two food-borne bacteria-Shigella, which causes dysentery, and Listeria, which triggers meningitis and stillbirths. She has found that after entering a host cell, these bacteria divide several times, then form “comet tails” that transport them directly among cells. This photograph shows the kidney cell of a kangaroo rat about four hours after it was injected with Listeria. Videos confirmed that proteins from both the bacteria’s surface and the host cell cooperated in drawing thousands of filaments (shown as green) to the bacteria (red) and in forming the tails. The elongating tails nudge the pathogens into adjacent cells, spreading the infection.

In work with other microbiologists, Theriot, who has recently moved to Stanford University, is determining which genes produce the bacterial proteins and also isolating the host-cell proteins involved. These steps could help in figuring out how to stop comet tails from forming and bacteria from moving from one cell to another. That, in turn, might lead to a more effective disease-fighting strategy than continually updating the antibiotics now used against bacteria such as Shigella.

Keep Reading

Most Popular

conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other
conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other

Forget dating apps: Here’s how the net’s newest matchmakers help you find love

Fed up with apps, people looking for romance are finding inspiration on Twitter, TikTok—and even email newsletters.

digital twins concept
digital twins concept

How AI could solve supply chain shortages and save Christmas

Just-in-time shipping is dead. Long live supply chains stress-tested with AI digital twins.

still from Embodied Intelligence video
still from Embodied Intelligence video

These weird virtual creatures evolve their bodies to solve problems

They show how intelligence and body plans are closely linked—and could unlock AI for robots.

computation concept
computation concept

How AI is reinventing what computers are

Three key ways artificial intelligence is changing what it means to compute.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.