Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

On 12th and 13th August 1883, an astronomer at a small observatory in Zacatecas in Mexico made an extraordinary observation. José Bonilla counted some 450 objects, each surrounded by a kind of mist, passing across the face of the Sun.

Bonilla published his account of this event in a French journal called L’Astronomie in 1886. Unable to account for the phenomenon, the editor of the journal suggested, rather incredulously, that it must have been caused by birds, insects or dust passing front of the Bonilla’s telescope. (Since then, others have adopted Bonilla’s observations as the first evidence of UFOs.)

Today, Hector Manterola at the National Autonomous University of Mexico in Mexico City, and a couple of pals, give a different interpretation. They think that Bonilla must have been seeing fragments of a comet that had recently broken up. This explains the ‘misty’ appearance of the pieces and why they were so close together.

But there’s much more that Manterola and co have deduced. They point out that nobody else on the planet seems to have seen this comet passing in front of the Sun, even though the nearest observatories in those days were just a few hundred kilometers away.

That can be explained using parallax. If the fragments were close to Earth, parallax would have ensured that they would not have been in line with the Sun even for observers nearby. And since Mexico is at the same latitude as the Sahara, northern India and south-east Asia, it’s not hard to imagine that nobody else was looking.

Manterola and pals have used this to place limits on how close the fragments must have been: between 600 km and 8000 km of Earth. That’s just a hair’s breadth.

What’s more, Manterola and co estimate that these objects must have ranged in size from 50 to 800 metres across and that the parent comet must originally have tipped the scales at a billion tons or more, that’s huge, approaching the size of Halley’s comet.

That’s an eye opening reexamination of the data. Astronomers have seen a number of other comets fragment. The image above shows the Schwassmann-Wachmann 3 comet which broke apart as it reentered the inner Solar System in 2006. There’s no reason why such fragments couldn’t pass close by Earth.

One puzzle is why nobody else saw this comet. It must have been particularly dull to have escaped observation before and after its close approach. However, Manterola and co suggest that it may have been a comet called Pons-Brooks seen that same year by American astronomers.

Manterola and co end their paper by spelling out just how close Earth may have come to catastrophe that day. They point out that Bonilla observed these objects for about three and a half hours over two days. This implies an average of 131 objects per hour and a total of 3275 objects in the time between observations.

Each fragment was at least as big as the one thought to have hit Tunguska. Manterola and co end with this: “So if they had collided with Earth we would have had 3275 Tunguska events in two days, probably an extinction event.”

A sobering thought.

Ref: arxiv.org/abs/1110.2798: Interpretation Of The Observations Made In 1883 In Zacatecas (Mexico): A Fragmented Comet That Nearly Hits The Earth

21 comments. Share your thoughts »

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me