Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Can bacteria generate radio waves?

On the face of it, this seems an unlikely proposition. Natural sources of radio waves include lightning, stars and pulsars while artificial sources include radar, mobile phones and computers. This is a diverse list. So it’s hard to see what these things might have in common with bacteria that could be responsible for making radio waves.

But today, Allan Widom at Northeastern University in Boston and a few pals, say they’ve worked out how it could be done.

They point out that many types of bacterial DNA take the form of circular loops. So they’ve modelled the behaviour of free electrons moving around such a small loop, pointing out that, as quantum objects, the electrons can take certain energy levels.

Widom and co calculate that the transition frequencies between these energy levels correspond to radio signals broadcast at 0.5, 1 and 1.5 kilohertz. And they point out that exactly this kind of signal has been measured in E Coli bacteria.

Let’s make one thing clear: this is a controversial area of science. The measurements of bacterial radio waves were published in 2009 by Luc Montagnier, who won the Nobel Prize for medicine in 2008 for the discovery of HIV. However, Montagnier is a controversial figure and it’s fair to say that his claims are not accepted by most mainstream biologists.

However, one of the criticisms of the work was that there is no known mechanism by which bacteria can generate radio waves. That criticism may now no longer hold.

That means Widom and co may be able to kickstart more work in this area. It is well known that bacterial and other types of cells use electromagnetic waves at higher frequencies to communicate as well as to send and store energy. If cells can also generate radio waves, there’s no reason to think they wouldn’t exploit this avenue too.

More science please!

Ref: arxiv.org/abs/1104.3113: Electromagnetic Signals from Bacterial DNA

You can now follow The Physics arXiv Blog on Twitter

6 comments. Share your thoughts »

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »