Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

In 1938, the physicist Frank Benford made an extraordinary discovery about numbers. He found that in many lists of numbers drawn from real data, the leading digit is far more likely to be a 1 than a 9. In fact, the distribution of first digits follows a logarithmic law. So the first digit is likely to be 1 about 30 per cent of time while the number 9 appears only five per cent of the time.

That’s an unsettling and counterintuitive discovery. Why aren’t numbers evenly distributed in such lists? One answer is that if numbers have this type of distribution then it must be scale invariant. So switching a data set measured in inches to one measured in centimetres should not change the distribution. If that’s the case, then the only form such a distribution can take is logarithmic.

But while this is a powerful argument, it does nothing to explan the existence of the distribution in the first place.

Read the full post…

0 comments about this story. Start the discussion »

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me