Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Black holes form when the gravitational field in a region of space is strong enough to prevent light escaping. The best known examples occur when stars run out of fuel and can no longer generate the heat needed to support their mass. If the star is big enough, the resultant collapse generates gravitational fields so strong that nothing can escape.

But how exactly does such a collapse occur? The conventional view is that the collapse occurs symmetrically, like a shrinking balloon. But that’s really only because this is the simplest situation to explore mathematically. Include any small perturbations in the calculations that change the symmetry and the mathematics of general relativity immediately becomes unmanageable.

Unless you have a supercomputer to help. Fortunately, this kind of computing power is becoming more common and Burkhard Zink at Max Planck Institute for Astrophysics in Garching and a few buddies have put it to good use.

They’ve simulated what happens to a collapsing, rotating star which is radially oscillating like a bell. That’s a reasonable enough scenario for a collapsing star in the real universe.

Astrophysicists have long known that such a star immediately becomes unstable but exactly what happens to it has eluded them.

With the help of some useful astrophysical computing code called Cactus, Zink and pals have found out. They say the star breaks into two or more self-gravitating parts that each develop their own event horizons. In other words, the star fragments into several black holes as it collapses.

What’s interesting about this is that the black hole fragments begin to spiral in towards each other and this ought to generate a unique gravitational wave signature that the next generation of detectors may well be able to pick up.

So we may find out sooner rather than later whether these guys are right.

Ref: arxiv.org/abs/gr-qc/0501080: Black Hole Formation Through Fragmentation Of Toroidal Polytropes

19 comments. Share your thoughts »

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me