Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

When it comes to antimatter, physicists have an embarrassing problem. Ask them whether a lump of the stuff would fall to Earth or be repelled by it, they’ll shuffle their feet and stare at their shoes.

The truth is that nobody knows; and not for lack of trying. Various attempts to drop antimatter and see where it goes have all been inconclusive.

But the mystery could now be solved by a latecomer to the field of antimatter research. Today, Dragan Hajdukovic, a physicist at CERN near Geneva, says that the current generation observatories designed to see neutrinos could answer this question.

And he takes an unconventional view of things. He points out that particle-antiparticle pairs are constantly leaping in and out of existence in any field sufficiently strong to allow this phenomenon.

Normally, gravity is too weak to support this process. However, he says that all changes inside a black hole where field strengths reach extraordinary values. Here, Hajdukovic calculates that the field ought to be strong enough to generate a regular stream of neutrino-antineutrino pairs.

If gravity attracts both matter and antimatter, then we’ll be none the wiser since matter can never escape from a black hole and we’d never see either of these particles.

But if gravity repels antimatter, the antineutrinos would be hurled out of the black hole with great energy. “While neutrinos must stay confined inside the horizon, the antineutrinos should be violently ejected,” says Hajdukovic,

That would make black holes powerful antineutrino sources. Hajdukovic calculates that the supermassive black holes at the centre of the Milky Way and Andromeda galaxies should be bright enough to be seen by the generation of the neutrino telescopes currently being built.

The biggest and most sensitive of these is IceCube, a detector currently being assembled in the ice beneath the South Pole. It should be complete next year.

Hajdukovic gives one caveat, however. He says that the discovery of antineutrinos streaming from black holes would not automatically settle the question of which way antimatter falls. The reason is that another previously unknown force may have generated the neutrino antineutrino pairs inside the balck hole. That’ll require further investigation.

Either way, that’d be a mighty interesting discovery. Let’s hope the guys at IceCube have their hi-tech lens cloths at the the ready.

Ref: arxiv.org/abs/0710.4316: Can The New Neutrino Telescopes Reveal The Gravitational Properties Of Antimatter?

31 comments. Share your thoughts »

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »