Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

One of the extraordinary features of the mammalian sound detection system is the range over which it works. This extends from 11 KHz in birds to 200 KHz in marine mammals.

This is only possible because the inner ear amplifies sounds by a factor of up to 4000. That’s a huge amount of gain. So much, in fact, that it’s hard to square with conventional thinking about mechanical amplification. So there is much head scratching among biologists over how the ear achieves this amplification.

Part of the puzzle is that the amplification is not entirely passive. The inner ear is essentially a fluid-filled tube, divided along its length by a thin elastic membrane. This membrane is covered in hair cells, which come in two types.

The so-called inner hair cells convert pressure waves within the fluid into electrical signals the brain can interpret. However, the outer hair cells act like mechanical amplifiers. When struck by a pressure wave, the cells themselves begin to vibrate at the same frequency, thereby boosting the wave as it passes.

The trouble is that measurements using outer hair cells indicate that they amplify pressure waves by a factor of about 10, a gain that falls far short of what’s required.

Today, however, Tobias Reichenbach and James Hudspeth at The Rockefeller University in New York city say they’ve worked out what else is going on to boost the signal.

Sound enters the inner ear as a pressure wave which travels through the fluid filled chamber, causing the membrane that divides it along its length to vibrate, like a sheet of rubber. Since the hair cells sit on this membrane they also move.

Reichenbach and Hudspeth calculate that the vibration of the outer hair cells not only amplifies the pressure wave, but also increases the displacement of the membrane, like a child bouncing on a trampoline.

When these effects combine, they result in a positive feedback effect, which creates a huge gain. This easily explains the 4000x amplification. In fact, the team says the gain can be even larger: “The overall cochlear gain, the product of these two components, can exceed 10,000,” say Reichenbach and Hudspeth.

All that remains is for the experimentalists to devise a way of showing that this is actually the process that achieves the gain, admittedly not the easiest of tasks. But one that could soon lead to this conundrum being settled once and for all.

Ref: arxiv.org/abs/1009.2034: Dual Contribution To Amplification In The Mammalian Inner Ear

5 comments. Share your thoughts »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »