Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

The same team of HP researchers who proved that buzz on Twitter is an accurate predictor of box office sales for new movies has calculated a new way to measure influence on the micro-blogging social network.

Their algorithm turns out to be far better at predicting how far a link will travel than counting followers, and is even better than the PageRank algorithm that powers the search results delivered by Google.

It’s called IP-Influence, and its predictive power reveals two facts important to anyone who wants to spread their message on Twitter:

1. The overwhelming majority of people on Twitter are passive - that is, they rarely if ever retweet anything.

2. The best predictor of how far a tweet or link will travel on Twitter is how much power its originator has to motivate the most passive of his or her followers to retweet it.

A user’s IP-Influence does not correlate well with the number of followers they have, which explains why, among Twitter’s most influential handles, Indonesian filmmaker Joko Anwar stands shoulder-to-shoulder with Google. Here, according to the HP analysis, are Twitter’s most influential accounts, as measured by their ability to get their links retweeted and subsequently clicked on:

@mashable, @jokoanwar, @google, @aplusk, @syfy, @smashingmag, @michellemalkin,@theonion, @rww, @breakingnews

In the extreme case, SyFy has only 40,000 followers on Twitter, or less 1% of the followers of any of the most popular users on twitter, which just goes to show that Nerds > Justin Bieber any damn day of the week.

Future applications of this algorithm could allow savvy twitter watchers to accurately predict what topics and links are going to go viral on Twitter before they actually do. From the paper:

Content ranking. The predictive power of IP-influence can be used for content filtering and ranking in order to reveal content that is most likely to receive attention based on which users mentioned that content early on. Similarly, as in the case of users, this can be computed on a per-topic or per-user-group basis.

h/t Chris Messina

Follow Mims on Twitter or contact him via email.

2 comments. Share your thoughts »

Tagged: Web, Twitter

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »