Close ×

### More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

## MIT Technology Review

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The problem of tiling a plane has fascinated builders and mathematicians alike since time immemorial. At first glance, the task is straightforward: squares, triangles, hexagons all do the trick producing well known periodic structures. Ditto any number of irregular shapes and combinations of them.

A much trickier question is to ask which shapes can tile a plane in a pattern that does not repeat. In 1962, the mathematician Robert Berger discovered the first set of tiles that did the trick. This set consisted of 20,426 shapes: not an easy set to tile your bathroom with.

With a warm regard for home improvers, Berger later reduced the set to 104 shapes and others have since reduced the number further. Today, the most famous are the Penrose aperiodic tiles, discovered in the early 1970s, which can cover a plane using only two shapes: kites and darts.

The problem of finding a single tile that can do the job is called the einstein problem; nothing to do with the great man but from the German for one– “ein”–and for tile–“stein”. But the search for an einstein has proven fruitless. Until now.

Today, Joshua Socolar and Joan Taylor at Duke University announce that they have solved the einstein problem and in the process they’ve discovered an entirely new way to approach the problem.

The tile they’ve discovered is essentially a modified hexagon shape. But they use a couple of tricks to achieve the result. First, they allow themselves to use a tile and its mirror image to tile a plane in an aperiodic fashion.

Obviously, some tilers may feel that this is bending the rules a little, so Socolar and Taylor go on to show that the mirror image is not necessary if the tile is allowed a 3D shape (see below).

“The tile presented here is the only known example of an aperiodic tile,” they say.

That’s an impressive result. After Penrose revealed his aperiodic tilings, physicists pointed out that certain crystals adopted similar patterns. It’ll be interesting to see whether nature has discovered Socolar and Taylor’s solution too.

Of course, the work leaves a substantial problem open: is it possible to tile a plane with a nonrepeating pattern using a single 2D tile?

I imagine Taylor and Socolar are puzzling over a bathroom wall at this very moment.

Ref: arxiv.org/abs/1003.4279: An Aperiodic Hexagonal Tile

Reprints and Permissions | Send feedback to the editor

Close

# Introducing MIT Technology Review Insider.

You're automatically an Insider. It's easy to activate or upgrade your account.

### Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me