Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Glioblastoma cells cultured in 3D with the Bio-Assembler.
Credit: Nano3D Biosciences

Being able to grow more realistic liver, heart, and other tissues in the lab could provide a new lease on life for patients waiting on the transplant list–and lead to more realistic systems for testing drugs. But tissue engineers have found that mimicking these complex, three-dimensional structures in the lab is difficult. Part of what’s holding them up are flat, two-dimensional tissue culture systems that grow cells in an environment very different from that inside the body.

Now researchers at Rice University and the MD Anderson Cancer Center in Houston have developed a simple way to make cells form 3-D structures. They developed a gel made up of a polymer, iron oxide nanoparticles, and engineered viruses called phage. When cells are added to this mixture, the phage cause them to absorb the magnetic particles. The Houston group showed that they could use a weak magnet to hold magnetized brain cancer cells in a 3-D suspension. Gene-expression studies showed that these suspended cells behave more naturally than a control group grown on a conventional flat surface: the cancer cells were producing a mix of proteins very similar to what they produce in the body. These results are described in Nature Nanotechnology this week.

The magnetizing gel has been licensed to a startup company, Nano3D Bioscience, which will run tests to compare the technology other methods for making 3-D tissues.

0 comments about this story. Start the discussion »

Tagged: Materials, startups, nanomaterials, drug development, tissue engineering, magnetism, brain cancer

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me