Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Electrical engineers in Debdeep Jena’s lab at the University of Notre Dame have found a way to make two nitride semiconductors conduct electricity better, which may make them useful for building more effective ultraviolet (UV) lasers and light-emitting diodes (LEDs). These devices could enable a wide range of applications such as high-density optical data storage, water treatment, sterilization of medical equipment, UV-enabled security marks on credit cards and paper money, and biological imaging.

A prototype UV LED made using Jena’s technique for growing nitride semiconductors.
Credit: AAAS

Nitride semiconductors such as aluminum gallium nitride and gallium nitride have the widest spectral range of band gaps–the energy required to move electrons through the material–among all semiconductors, ranging from the infrared through the visible and into the deep UV range. This makes them excellent for use in short-wavelength lasers and in LEDs for solid-state lighting, but it also makes it hard for engineers to design energy-efficient devices.

Like all semiconductors, nitrides need to be “doped” with foreign materials to conduct electricity efficiently. This either provides the material with charge-carrying electrons, or electron vacancies–called holes–that allow electrons to move freely. But the energy barriers in gallium nitride (GaN), for instance, are so large that even devices made with magnesium (the most commonly used hole-dopant for GaN) don’t work well at room temperature, making them extremely inefficient.

In a paper published in the January 1, 2010, issue of Science, Jena and his colleagues describe growing graded layers of aluminum gallium nitride (doped with magnesium) on the nitride surface of gallium nitride crystals. This means that the proportion of aluminum to gallium in the top layer increased as its thickness grew. Experiments testing this material’s conductivity showed that making the semiconductor this way efficiently activated the magnesium doping atoms at room temperature.

Jena’s group also built prototype UV LEDs using both the graded aluminum gallium nitride (AlGaN) material and regular maginesium-doped GaN. The AlGaN LEDs were both more efficient and brighter than the GaN devices. Jena believes that this should make nitride semiconductors much more practical alternatives for any device requiring UV light.

0 comments about this story. Start the discussion »

Tagged: Computing, security, imaging, data storage, semiconductors

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me