Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

If we’re ever going to travel a significant distance from Earth, we’re going to have to break our dependence on chemical propulsion systems. It’s just not possible to carry enough chemical propellant to get up to a decent trot.

An alternative is a solar sail, which uses the force of solar radiation pressure to accelerate. By one calculation, a solar sail with a radius of about a kilometer and a mass of 300 kg (including 150 kg of payload) would have a peak acceleration of about 0.6 g if released on a parabolic trajectory about 0.1 astronomical unit (AU) from the sun (where the radiation pressure is higher).

That kind of acceleration would take it beyond the Kuiper belt to the heliopause, the boundary between the solar system and interstellar space (and a distance of 200 AU), in only 2.5 years.

In 30 years, a solar sail could travel 2,500 AU, far enough to explore the Oort Cloud.

But such a journey may not be smooth sailing, particularly when it comes to navigation, say Roman Kezerashvili and Justin Vazquez-Poritz, physicists at the City University of New York. They claim that ordinary Newtonian physics just doesn’t cut it for this kind of journey.

The problem is that the sail would have to be launched so close to the sun that the effects of general relativity, such as the precession of the perihelion of orbiting objects, have to be taken into account. And even though those effects are relatively minor to start with, they have a significant effect over long distances.

The calculations carried out by Kezerashvili and Vazquez-Poritz show that the effects of general relativity could push a solar sail off course by as much as a million kilometers by the time it reaches the Oort Cloud and that even tiny relativistic forces such as frame dragging could cause a deflection of 1,000 kilometers.

What these guys are saying is that the interstellar navigators will have to be proficient in a new discipline of relativistic navigation.

That won’t be an issue for a while, though. The most optimistic estimate for the launch of such a mission is around 2040.

Ref: arxiv.org/abs/0907.3336: Escape Trajectories of Solar Sails and General Relativity

9 comments. Share your thoughts »

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me