Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

I

It’s not hard to see how the game of basketball is like a network. Think of the pattern of passes that players make to score a basket as one route through a network of all possible combinations of passes.

But it’s much harder to imagine how to use this way of thinking to come up with useful strategies for coaches and players. Yet, that’s exactly what Brian Skinner, a physicist at the University of Minnesota in Minneapolis, has done.

His idea is that this kind of network is similar to one formed by cars travelling through a system of roads. Each car is like a single possession of the ball, which moves through the network until it reaches its goal.

Although traffic is notoriously hard to model accurately, network theory can give useful and important insights into the way that traffic behaves.

For example, traffic patterns tend toward a Nash equilibrium, in which selfish drivers calculate the best route in the same way, thereby failing to improve their journey times by taking a different route.

Were drivers to vary their routes occasionally, all would reach their destination more quickly, on average. That’s because the most heavily clogged roads, which act as bottlenecks, would run more smoothly. (Skinner talks about this with great clarity in the paper.)

Sometimes it’s possible to force drivers to change routes. In recent years, researchers have noticed how closing major roads has improved the flow of traffic through a city, a phenomenon called Braess’s Paradox.

That makes for an interesting basketball analogy. Players can be thought of as “routes” through the network. The implication of Braess’s Paradox is that removing the best player can sometimes improve a team’s performance, a phenomenon Skinner calls the Ewing Paradox.

Of course Skinner cautions against taking the analogy too far. His model doesn’t capture many of the complexities of basketball. For example, the actions of the defense aren’t modeled at all.

But it has interesting implications for analysts. It may be that many teams tend towards a Nash equilibrium in their choice of plays when there may be a better solution. Network theory could help them discover these better strategies.

And if it works for basketball, why not for other games in which a sequence of passes can be thought of as routes through a network of all possible passes? Think netball, soccer, hockey, etc.



Ref: arxiv.org/abs/0908.1801: The Price of Anarchy in Basketball

2 comments. Share your thoughts »

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »