Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A new nanoparticle contrast agent gives a clearer picture of a mouse’s brain tumor in both MRI and optical images (left column) than is possible without the agent (right column). The tumor is located in the cerebellum. Credit: Cancer Research

Researchers at the University of Washington, Seattle have made the first imaging nanoparticle that can cross the blood-brain barrier. The nanoparticle, which specifically targets tumor cells, might help surgeons better pinpoint the boundaries of brain tumors.

The blood vessels that serve the brain are much more selective about what gets through than those feeding the rest of the body’s organs. This helps protect the brain from infection, but it also makes it difficult to get drugs and image-contrast agents inside the brain. The barrier can be temporarily broached using drugs, but at the risk of infection. This has made it difficult to apply recent developments in the field of molecular imaging, which uses targeted nanoparticles to light up tumor cells, to the brain. Targeted imaging could be particularly useful for imaging brain tumors, since these tend to be very invasive, infiltrating the surrounding brain tissue, making it difficult to remove them without damaging surrounding tissues, leading to cognitive problems.

The Seattle researchers developed a nanoparticle that is visible on magnetic resonance imaging scans and under the near-infrared light used by surgical microscopes. They tuned the particle’s properties–size, fat content, and electrical charge–so that it could cross the blood-brain barrier. It’s made up of an iron-oxide sphere coated with a fluorescent protein and a protein that’s targeted to tumor cells. When administered through a blood vessel to mice carrying brain tumors, the nanoparticle, which is described this week in the journal Cancer Research, improved contrast in brain imaging scans.

0 comments about this story. Start the discussion »

Tagged: Biomedicine, cancer, imaging, brain, neuroscience, infection

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me