Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

In recent years, chip makers have conlcuded that the race to produce ever faster circuits is a fool’s game. As the clock speed increases, the amount of energy lost as heat becomes too large to dissipate efficiently and in any case, the waste is unjustifiable.

That raises some interesting questions about the human brain, says Jan Karbowski at the Sloan-Swartz Center for Theoretical Neurobiology at the California Institute of Technology. Karbowski points out that the problem of heat transfer could be a serious factor shaping brain evolution and so has embarked on a program to determine the relationship between brain temperature, its size, cerebral power generated and neural activity.

The question on Karbowski’s mind is whether there is any thermodynamic limit on brain size. And if so, does 5 kg, which Karbowski says is the mass of the largest mammalian brain, approach that limit?

Karbowski points out that brain cooling is not a classic problem of surface-area to volume. Instead, brain cooling is more closely comparable to that in a combustion heat engine where a liquid coolant removes heat.

“In the brain, the role of the coolant is played by the cerebral blood, but only in the deep region because there blood has a slightly lower temperature than the brain tissue,” says Karbowski.

But in the regions closer to the surface, it is the oter way round: brain tissue is colder than the cerebral blood which warms the brain.

This implies that the thermodynamics of heat balance does not restrict the brain size. And this in turn suggests that brains could be heavier than 5 kg, says Karbowski.

(And of course they do get bigger than this. The sperm whale’s brain can be 9 kilograms).

That leaves plenty of growing room for humans which have brains of only 1.5 kilograms on average.

Ref: http://arxiv.org/abs/0905.3690: Thermodynamic Constraints on Neural Dimensions, Firing Rates, Brain Temperature and Size

5 comments. Share your thoughts »

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me