Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

This shows the vertical displacement of the land surface south of Bam, Iran, after the earthquake. The dark-blue area sank more than three centimeters. Credit: Eric Fielding, JPL, California Institute of Technology

For the first time, scientists have been able to watch the deformation and recovery of Earth’s surface over the three-and-a-half years following a devastating earthquake. The researchers studied the aftermath of the 2003 Iranian Bam earthquake using a European Space Agency (ESA) satellite. Led by Eric Fielding of the Jet Propulsion Laboratory, California Institute of Technology, the scientists used a remote-sensing technique called interferometric synthetic aperture radar (InSAR) to create images and maps of the region over this period.

“The most important thing we found is that there is this elongated ditch, like a depression, that formed after the earthquake. It’s very shallow, only six centimeters after the 3.5 years, but it follows exactly along the area where the fault ruptured,” says Fielding. Understanding how damage zones respond to a quake may help predict how buried faults will behave, he adds. The findings were published today in the journal Nature.

Currently, little is known about what happens to Earth’s surface before or after an earthquake. Seismic monitoring using networked sensors, GPS, or ground surveys is only common in areas like California where the frequency of an event is high. In this study, the researchers used satellites to gather raw data and then processed the information into maps using InSAR, which pairs two radar images and measures the difference between every point (every 20 meters) in the images. The technique creates a very high resolution map so that scientists can see how the deformation caused by the earthquake is distributed.

The researchers have created 94 images thus far from four different tracks of data, says Fielding. “We need to understand the risks, so that we can eventually get to the level of predictions.”

The scientists are currently working with NASA on a new mission: to design a satellite that would allow them to do the same analysis for other earthquakes in different areas. The satellite needs to use different radar wavelengths that can penetrate areas with significant vegetation and capture images more frequently (Envisat acquired data every 35 days). The mission seems promising, especially since President Obama’s budget has allocated a good portion of money to NASA’s earth-science missions.

A 3-D view of the vertical displacement of the land surface south of Bam, Iran, during the 3.5 years after an earthquake. The dark-blue area on the top image sank a total of more than three centimeters. The model below shows the zone of rock damage that contracted after the earthquake; green shows the strongest contraction. Credit: Eric Fielding, JPL, California Institute of Technology

0 comments about this story. Start the discussion »

Tagged: Computing, NASA, satellite data

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »