Skip to Content

Satellite mega-constellations

Julia Dufossé

Satellite mega-constellations

  • Why it matters

    These systems can blanket the globe with high-speed internet—or turn Earth’s orbit into a junk-ridden minefield.
  • Key players

    SpaceX, OneWeb, Amazon, Telesat
  • Availability

    Now

We can now affordably build, launch, and operate tens of thousands of satellites in orbit at once.

Satellites that can beam a broadband connection to internet terminals. As long as these terminals have a clear view of the sky, they can deliver internet to any nearby devices. SpaceX alone wants to send more than 4.5 times more satellites into orbit this decade than humans have ever launched since Sputnik.

These mega-constellations are feasible because we have learned how to build smaller satellites and launch them more cheaply. During the space shuttle era, launching a satellite into space cost roughly $24,800 per pound. A small communications satellite that weighed four tons cost nearly $200 million to fly up.

Today a SpaceX Starlink satellite weighs about 500 pounds (227 kilograms). Reusable architecture and cheaper manufacturing mean we can strap dozens of them onto rockets to greatly lower the cost; a SpaceX Falcon 9 launch today costs about $1,240 per pound.

The first 120 Starlink satellites went up last year, and the company planned to launch batches of 60 every two weeks starting in January 2020. OneWeb will launch over 30 satellites later this year. We could soon see thousands of satellites working in tandem to supply internet access for even the poorest and most remote populations on the planet.

But that’s only if things work out. Some researchers are livid because they fear these objects will disrupt astronomy research. Worse is the prospect of a collision that could cascade into a catastrophe of millions of pieces of space debris, making satellite services and future space exploration next to impossible. Starlink’s near-miss with an ESA weather satellite in September was a jolting reminder that the world is woefully unprepared to manage this much orbital traffic. What happens with these mega-constellations this decade will define the future of orbital space.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

OpenAI teases an amazing new generative video model called Sora

The firm is sharing Sora with a small group of safety testers but the rest of us will have to wait to learn more.

Google’s Gemini is now in everything. Here’s how you can try it out.

Gmail, Docs, and more will now come with Gemini baked in. But Europeans will have to wait before they can download the app.

This baby with a head camera helped teach an AI how kids learn language

A neural network trained on the experiences of a single young child managed to learn one of the core components of language: how to match words to the objects they represent.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.