Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Go about 145,000,000 bases (or “letters”) down the long arm of chromosome 1 and you’ll come to 1q21.1, the genetic address of a small but important piece of DNA that is particularly prone to mistakes. When chromosome 1 is duplicated during normal cell division (say, in creating sperm or eggs), short, repetitive bits of DNA within this stretch are all too likely to mistakenly pair up, raising the chances that the new cells will have extra or missing copies of specific pieces of DNA.

Those small mistakes can have a big impact on people who carry them. Several studies in the last year have found that missing or extra pieces of DNA in the 1q21.1 region put the bearer at risk for a surprisingly broad range of psychiatric and neurological disorders, including autism, schizophrenia, and mental retardation. The discovery that one piece of DNA can lead to such diverse outcomes is opening new avenues in the study of disease. Rather than focusing solely on finding a common genetic flaw in everyone with a particular disease, researchers have begun to examine the various consequences that the same genetic flaw may have in different people. These studies suggest that even patients with different diagnoses may share common biological problems. “It’s been eye-opening,” says Mark Daly, a geneticist at the Broad Institute in Cambridge, MA, “because it’s made us realize that in searching for the molecular basis of disease, it may be profitable to search for connections between seemingly unrelated phenotypes.” Last year, Daly and his colleagues identified a section of DNA on chromosome 16 that also raises the risk of several different brain disorders, suggesting that this pattern may be common in the genetics of disease.

Physicians have long known that structural abnormalities in our genomes–deletions, duplications, and rearrangements of large stretches of DNA–trigger developmental problems and disease. Down syndrome, for example, results from an extra copy of chromosome 21. But over the last few years, new kinds of microarrays–small slides dotted with specific sequences of DNA–have begun allowing scientists to efficiently search the genome for architectural flaws too small to be visible with a microscope. These errors, called copy number variations, are distinct from the single-letter changes that until recently have been the focus of most research into genetic variation. Ranging in size from one thousand to more than one million base pairs, they can encompass part of a gene or one or more entire genes.

The far end of region 1q21.1, which at about one million bases long constitutes a tiny percentage of the roughly 3.2 billion pairs of letters that make up human DNA, harbors just one of the genome’s many “hot spots”–so called for their tendency toward structural instability. But in this region, structural abnormalities–especially missing sequences–seem particularly troublesome. Intrigued by this mysterious morsel of DNA, Heather ­Mefford, a pediatric geneticist at the University of Washington in Seattle, compiled data on variations in 1q21.1 from clinical genetics labs around the world. She found that 25 patients in a sample of more than 5,000 people with autism, mental retardation, or other congenital abnormalities were missing the same chunk within the region. While that is a small percentage, no one in a similar-sized group of healthy people carried that particular mistake, meaning that the deletion is the likely cause–or at least partial cause–of the patients’ problems. Studies by other researchers have linked similar changes in the region to schizophrenia, as well as to abnormal head size and accompanying developmental delays.

Different studies linking 1q21.1 to mental retardation, autism, and schizophrenia all identified deletions or duplications in approximately the same region. That’s because this particular stretch is flanked by repetitive sequences prone to rearrangement. It contains at least eight known genes, the functions of which are mostly unknown. “This region of the genome must clearly have one or more genes that are important for normal cognitive development,” says Mefford, whose research was published in the New England Journal of Medicine in October.

1 comment. Share your thoughts »

Credit: Martin O’Neill

Tagged: Biomedicine, DNA, genome, disease, sequencing, autism, schizophrenia

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me