Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

NASA could even propose, Zubrin suggests, that companies compete for the CEV contract. And the money NASA saved by ordering a smaller CEV, Zubrin writes, could be immediately applied to the development of the heavy lift vehicle. The CEV and the HLV could therefore be completed sooner, allowing the shuttle’s early retirement, saving even more money.

Others have their own scenarios for returning to the Moon on the cheap; Poway, CA-based SpaceDev, for example, proposes placing a series of habitat modules in lunar orbit and on the surface and sending down one astronaut at a time on a personal “rocket chair.” It claims that 40 people could visit the Moon in this way “for the cost of NASA’s first mission.”

Apollo 17 astronaut Harrison Schmitt, a trained geologist, believes that there’s a highly practical reason for going back to the Moon: solar wind impregnates the lunar dust with a nonradioactive isotope called helium-3, which could be useful as a fuel for large-scale nuclear fusion. Schmitt has just published a book, Return to the Moon: Exploration, Enterprise, and Energy in the Human Settlement of Space, which recognizes that any permanent return to the Moon is unlikely in the absence of help from private enterprise.

Schmitt’s futuristic scheme, of course, entails sending significant quantities of lunar dust to Earth for processing, but he calls that “a relatively small challenge” compared to developing fusion plants and lunar mining facilities. He suggests options for powering transport craft – including rocket boosters and electromagnetism – that would make use of lunar resources.

Indeed, escaping the Moon’s weak gravity is comparatively easy; the hardest part of space travel is getting from Earth’s surface into orbit. From there, a spacecraft can go anywhere in the solar system for roughly the same amount of energy. So once we reach a point where commercial enterprises can supply cheap, reliable means to reach orbit, much more will become possible.

Under Griffin’s leadership, NASA seems likely to underwrite part of this effort – as well it should. If the agency hopes to send more Americans into space within the Bush administration’s budget, it will need to tap into new ideas from the commercial realm – where money is an object.

“Commercial Orbital Transportation Services (COTS) Space Flight Demonstrations”
Solicitation number: JSC-COTS-1
Posted: October 28, 2005
Contracting office: NASA/Lyndon B. Johnson Space Center

Return to the Moon: Exploration, Enterprise, and Energy in the Human Settlement of Space
By Harrison H. Schmitt
Springer, 2005, $25.00

Mark Williams is a contributing writer at Technology Review.

1 comment. Share your thoughts »

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me