Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

True Augmentation
Engelbart’s dream came true because Moore’s Law held. Those who believed in the law often succeeded. They saw, as Engelbart did, that computing was destined to become cheap and therefore widely available. It was these people who gave rise to a new wave in computing: the PC industry. Those people who did not foresee the impact of the relentless miniaturization fared less well; thus nearly all of the companies in the previous wave – the minicomputer industry – failed or were acquired.

Most of today’s best thinkers on the subject agree that Moore’s Law has 10 or more years yet to run. If they’re right, transistor density will in 10 years be about 100 times what it is now. In thinking about the future of computing, in hoping for further augmentation of the human intellect, do we understand what another 100-fold increase in computing power will mean? It should enable big new dreams. Let me suggest some, which might fuel the next part of the story of personal computing.

Engelbart imagined a figure called an “augmented architect”:

“Let us consider an ‘augmented’ architect at work. He sits at a working station that has a visual display screen some three feet on a side; this is his working surface and is controlled by a computer (his ‘clerk’) with which he can communicate by means of a small keyboard and other devices….Every person who does his thinking with symbolized concepts…should be able to benefit significantly.”

Are we taking full advantage of the power of computers to augment our intellects? I don’t think so. Computers are currently unaware of their environments – of the people and objects around them. The computer does not have cameras to see what we see, to know what books and papers are in the room. We don’t interact with the computer in natural ways – for instance, by drawing on paper (while the computer watches with its camera) or on electronic paper (on which the computer could draw too). We don’t talk, listen, or gesture to computers the way we do to each other.

And we’re no better at entering into the computer’s environment than it is at understanding ours. The best commonly available immersive technology we have today is the video game, not the architectural design package. We, sadly, spend much more of our collective energy and focus on virtual reality for entertainment than for education and augmentation.

Worst of all, computer software doesn’t really interact with us. It executes what we request but doesn’t initiate actions on its own. Our computers do not understand the goals of the projects we’re working on. They don’t think ahead and work, unprompted, in concert with us toward those goals. In reality, we work alone.

We have, or will soon have, sufficient computing power to build interactive, immersive, and aware software, so that the rooms in which we work, as architects or engineers, scientists or students, can routinely become immersive and interactive environments. We need to sponsor the hard research needed to make this dream a reality – to find and to fund the dreamers.

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me