Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Psychoactivity is a broad term for the action of the many chemicals that affect the function of the brain. There are many classes of these substances, such as stimulants, anesthetics, sedatives, narcotics, depressants, antidepressants – and also psychedelics. The mechanism of action of such drugs always involves psychoneurological systems. Medically valuable psychoactive drugs are most often discovered in animal behavior experiments, and finding out how the drugs work frequently calls upon sophisticated research using appropriately radio-labeled synthetic samples.

But for the past four decades, I have studied psychoactive drugs at the far end of the spectrum: those that affect the mind. These substances are usually discovered by people experimenting on humans. Rats have brains, and we can remove them, cut them into slices, and see where experimental drugs have gone – but I am not sure rats have what most people think of as minds.

It should be stated outright that the uses of these drugs are not merely recreational (although of course they are used that way all the time, and for other, more meditative reasons). Recently, several researchers successfully navigated the bureaucratic paperwork necessary to get approval of and permission for clinical studies of psychedelics. A study by Francisco Moreno at the University of Arizona using psilocybin in the treatment of obsessive-compulsive disorder has been completed. And two other studies of psychedelics are under way: one, at the Harbor-UCLA Medical Center, is exploring psilocybin as a treatment for anxiety in patients with advanced-stage cancer; the other, being conducted in South Carolina, studies the treatment of post-traumatic stress disorder patients with MDMA – the drug more commonly known as ecstasy. Additional studies should soon be up and running, including one at Harvard’s McLean Hospital that will investigate the potential value of MDMA in treating cancer patients’ anxieties.

I choose to call these psychoactive compounds psychedelics, but many names have been used for them. Originally they were called psychotomimetics, which meant, literally, drugs that produced a state that imitated psychosis. This was soon superseded by “hallucinogens,” which is a more acceptable term but equally inaccurate. The actions of the psychedelics can involve visual phenomena (color enhancement, shape distortion, unexpected interpretations), but these are recallable from memory – there is none of the amnesia that often accompanies a true hallucination. Other terms have been used, such as entactogens (touching within), empathogens (creating empathy), and entheogens (discovering God within), but I still prefer “psychedelics.” It may be offensive to some people, but at least they know what I am talking about.

The very first psychedelic I experienced (this was 45 years ago) was the peyote-cactus alkaloid, mescaline. It was an awesome experience in several ways. But its most dramatic result was my realization that there was no way the forgotten memories of my childhood that had just resurfaced, and the display of colors of which I had previously been unaware, could be contained in a few hundred milligrams of a white crystalline powder. To me it was inescapable that all the richness of that day had been inside my mind all along, and the drug was just the catalyst that gave me access to it. Since I am a chemist, I can easily synthesize chemicals with subtle structural differences – like a slightly longer carbon chain here or a sulfur in place of an oxygen there – to find the dosages where they become active.

Two or three examples. When I moved one of the methoxy groups of mescaline to an adjacent position, and replaced another one with an ethyl group, I got a beautiful white solid that I named 2C-E. It was fully active in me at 20 milligrams taken orally. The visual activity and color enhancement it effected were very much like those of LSD, but 2C-E had a strange and (for me) novel property. On occasion, during a psychedelic experience, I would ask myself an important, private question to see what answer might bubble up. If the question turned out to be too complex, or touched on unpleasant subjects, I would drop it and ask another. But 2C-E wouldn’t let me do that. I had to stay with each question until I worked through to an answer.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me