Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

When Jennifer Chayes left her job at the University of California, Los Angeles, in 1997 to become a researcher at Microsoft’s labs in Redmond, she declared that it would take 100 years for her academic work to find real-world applications. But as managing director of the newly announced Microsoft Research New England lab in Cambridge, MA, she has parlayed her background in mathe­matical physics into research with broad implications for today’s Internet.

To Chayes, the trails left by countless social and business interactions on the Internet amount to enormous math problems. Solving those problems, she believes, will help computer scientists create online tools, such as search engines and social networks, that are more efficient and effective.

TR assistant editor Erica Naone met with Chayes at the still-empty offices of her new Cambridge lab to learn how a mathematician understands the Internet.

TR: What is the common theme in your research?

Jennifer Chayes: I’m particularly interested in self-organized networks, such as the World Wide Web and social networks. In self-organized networks, people or entities choose to enter the network on their own. There’s not some authority dictating the structure of the network, so that structure is constantly evolving.

Can you give me an example of how you try to understand a network?

There’s a whole area called game ­theory, which takes into account that people are selfish agents. [It also models their interactions and the possible outcomes, attempting to define the best result for each “player.”] Now researchers are starting to study game theory on networks, modeling the complex interactions among many selfish agents. Understanding the possible outcomes and behaviors of these networks is one of the next big mathematical challenges.

TR: Are there examples?

JC: [Online] advertisers bidding on a variety of keywords. Each advertiser is a self-interested party interacting with all other advertisers who bid on the same keywords. Each advertiser has a valuation for each word, and an overall budget. Since we don’t know how to deal with the repeated game on the network implicit in this set of interactions, we just do a separate auction on each keyword to assign ads to search words. Maybe if we could deal with some of these problems mathematically, we could come up with something that was actually more efficient than these separate auctions–better for the advertisers, better for the customers, better for the search engines.

TR: How would that help?

JC: If we more efficiently match up ads with queries when we perform the ad auctions, then the consumer is more likely to get what he or she is seeking, the advertiser is more likely to generate maximum sales per ad dollar, and the search engine is more likely to generate the maximum revenue per search. No search engine comes close to the optimum today. So there’s a lot of room for improvement.

1 comment. Share your thoughts »

Credit: Mark Ostow

Tagged: Computing, Business, Microsoft, social networks, search, Web 2.0, recommendation engines, online auctions

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me