Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

By harvesting and burning fossil fuels, human beings essentially provide the tail end of a cycle hundreds of millions of years long. Plants and algae that grew by taking in carbon dioxide eventually turned into the deposits of coal and petroleum that we use to power our lives, rereleasing into the atmosphere the same carbon dioxide that nature had previously sequestered. Reducing these emissions will require us to change the way we think about both energy and carbon.

Reforestation is one tactic that has been broadly contemplated to mitigate rising levels of carbon dioxide; carbon capture and sequestration is another. These approaches close the carbon-energy cycle, but they have limited effectiveness in the near term and are difficult to implement on a large scale. Options such as corn ethanol, cellulosic biofuels, and fuels produced by algae offer a way to shorten the cycle: feedstock is grown for several years and then converted to ethanol or diesel. But these processes require input energy, typically from fossil fuels, and are therefore an imperfect solution.

There is a better way. A handful of projects–including an effort by Craig Venter’s energy company, Synthetic Genomics–are now under way to use genetically modified photosynthetic organisms to generate fuels with input energy from the sun.

One such effort is Helioculture, an emerging technology pioneered by Joule Biotechnologies of Cambridge, MA, which can uniquely convert sunlight and carbon dioxide directly into a range of fuels and petroleum-derived chemicals that do not require any additional processing steps. The process consumes no fresh water or agricultural land. But while the organism is important, it is not sufficient. Photosynthetic organisms engineered to produce ethanol or other fuels are grown in special chambers shaped much like solar panels, where they absorb sunlight and generate liquid fuels rather than electrons.

Unlike solar energy from photovoltaics, which depends on costly batteries for storage, fuels are efficiently stored in barrels, simplifying distribution and demand management. And because the technology used to grow the organisms is modular, it is easy to scale up. Joule is now gearing up to build a pilot plant in the southwestern United States. I believe that this new fuel source can feasibly replace the 289 billion gallons of gasoline per year that the United States is projected to need in 2050, and it can be produced in an area about the size of the panhandle of Texas.

Technologies of this kind promise a path to true energy independence, enabling us to reduce, or at least stabilize, carbon-dioxide emissions while supporting the power-hungry society we have created.

David Berry is a partner at the venture capital firm Flagship Ventures and a cofounder of Joule Biotechnologies. He was the TR35 Innovator of the Year in 2007.

2 comments. Share your thoughts »

Credit: Nick Reddyhoff

Tagged: Biomedicine, Energy, solar power, biofuel, carbon dioxide, coal, synthetic biology, fossil fuels, algae, photosynthetic algae

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me