Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Later this month, if all goes well, Space Exploration Technologies, or SpaceX, will achieve a spaceflight first.

After delivering cargo to the International Space Station, the first stage of the Falcon 9 rocket used for the flight will fire its engines for the second time. The burn will allow the rocket to reenter the atmosphere in controlled flight, without breaking up and disintegrating on the way down as most booster rockets do.

The launch was originally planned for March 16, but the company has delayed the launch until at least March 30 to allow for further preparation.

The machine will settle over the Atlantic Ocean off the coast of its Cape Canaveral launchpad, engines roaring, and four landing legs will unfold from the rocket’s sides. Hovering over ocean, the rocket will kick up a salt spray along with the flames and smoke. Finally, the engines will cut off and the rocket will drop the last few feet into the ocean for recovery by a waiting barge.

Future flights of the so-called F9R rocket will have it touching down on land. For now, a water landing ensures maximum safety in case the rocket goes off course.

The test of SpaceX’s renewable booster rocket technology will be the first of its kind and could pave the way to radically cheaper access to space. “Reusability has been the Holy Grail of the launch industry for decades,” says Jeff Foust, an analyst at Futron, a consultancy based in Bethesda, Maryland. That’s because the so-called expendable rockets that are the industry standard add enormously to launch costs—the equivalent of building a new aircraft for every transatlantic flight.

SpaceX began flying low-altitude tests of a Falcon 9 first stage with a single engine, a rocket known as Grasshopper, at its McGregor, Texas, proving grounds in 2012. The flights got progressively higher, until a final test in October, when the rocket reached an altitude of 744 meters. Then, following a flight to place a communications satellite in geosynchronous orbit from Vandenberg Air Force Base in California in November, a Falcon 9 first stage successfully restarted three of its nine engines to make a controlled supersonic reentry from space.

The rocket survived reentry, but subsequently spun out of control and broke up on impact with the Pacific Ocean. SpaceX CEO Elon Musk said in a call with reporters after the flight that landing legs, which that rocket lacked, would most likely have stabilized the rocket enough to make a controlled landing on the water. The March 16 flight will be the first orbital test with landing legs.

After recovering the rocket from the water on Sunday, SpaceX engineers and technicians will study it to determine what it would take to refurbish such a rocket for reuse. SpaceX also has plans to recover and reuse the second stage rocket, but for now, it will recover only the first stage and its nine Merlin engines, which make up the bulk of the cost of the rocket.

Even without reusable rockets, SpaceX has already shaken up the $190-billion-a-year satellite launch market with radically lower launch costs than its competitors. The company advertises $55.6 million per Falcon 9 launch. Its competitors are less forthcoming about how much they charge, but French rocket company Arianespace has indicated that it may ask for an increase in government subsidies to remain competitive with SpaceX.

Closer to home, SpaceX is vying for so-called Evolved Expendable Launch Vehicle, or EELV, contracts to launch satellites for the U.S. Air Force. Its only competitor for the contracts, United Launch Alliance, charges $380 million per launch.

Musk testified before a Senate Appropriations Subcommittee on Defense meeting on March 5 that his company can cut that cost down to $90 million per launch. He said the higher cost for a government mission versus a commercial one was due to a lack of government-provided launch insurance. “So, in order to improve the probability of success, there is quite a substantial mission assurance overhead applied,” Musk said in the hearing. Still, SpaceX’s proposed charge for the Air Force missions is a mere 23 percent of ULA’s.

SpaceX is counting on lower launch costs to increase demand for launch services. But Foust cautions that this strategy comes with risk. “It’s worth noting,” he says, “that many current customers of launch services, including operators of commercial satellites, aren’t particularly price sensitive, so thus aren’t counting on reusability to lower costs.”

That means those additional launches, and thus revenue, may have to come from markets that don’t exist yet. “A reusable system with much lower launch costs might actually result in lower revenue for that company unless they can significantly increase demand,” says Foust. “That additional demand would likely have to come from new markets, with commercial human spaceflight perhaps the biggest and best-known example.”

Indeed, SpaceX was founded with human spaceflight as its ultimate mission. It is now one of three companies working with NASA funds to build ships capable of sending astronauts to the International Space Station. Musk plans to take SpaceX even further—all the way to Mars with settlers. And colonizing Mars will require lots of low-cost flights.

Michael Belfiore (michaelbelfiore.com) is the author of Rocketeers: How a Visionary Band of Business Leaders, Engineers, and Pilots Is Boldly Privatizing Space.

Updated on March 14, at 3 p.m. EST, to include mention of the delay.

 

The Next Silicon Valley


Brought to you by:
startup.focus. logo
SAP logo

Every region dreams of becoming the next center for technology and the cradle of tomorrow’s startups. Here’s how history, culture, luck, and sheer population size shape competitive advantage.

Free download courtesy of SAP Startup Focus: Download report

32 comments. Share your thoughts »

Credit: Image courtesy of SpaceX

Tagged: Computing, Communications, SpaceX

Reprints and Permissions | Send feedback to the editor

Michael Belfiore Guest Contributor

View Profile »

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me