Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

One of the most important innovations in Apple’s latest iPads lies behind the screen. In many of the tablets, the pixels in the display are controlled by transistors made of a material called indium gallium zinc oxide (IGZO), a promising replacement for the conventional amorphous silicon.

Displays featuring “backplanes” of IGZO transistors should make it possible for tablets and TVs to have much higher-resolution displays while consuming significantly less power. The technology has already cropped up in low volumes of high-end smartphones and televisions, but its appearance in iPads suggests we can expect IGZO to improve several more popular products over the next year.

Display makers are racing to produce screens with ever-higher resolution, including ones based on organic light-emitting diodes (OLEDs), which promise not only a better picture but also greater power efficiency and compatibility with flexible form factors. But the display makers have run up against the physical limits of amorphous silicon, because electrons don’t move through that material fast enough. If transistors can be made from a material with a higher degree of “electron mobility,” the transistors can be smaller, making it possible to pack more pixels into a given space.

The highest-resolution smartphone screens already feature an alternative material called low-temperature polysilicon (LTPS). But LTPS panels are relatively expensive to make, and the fabrication method has proved difficult to adapt to displays larger than those on phones. IGZO transistor arrays are cheaper to make, and the manufacturing method is more compatible with larger screens. Though electrons don’t move through IGZO as quickly as they do through LTPS, IGZO’s electron mobility is still 10 times better than amorphous silicon’s. This means IGZO can be used to efficiently run OLED pixels, which require more current than their LCD counterparts.

Not all of the latest iPads have IGZO displays; in fact, it’s not entirely clear how many of the tablets have the technology. Luke Koo, senior manager of a team in Seoul that tears down devices for the IHS research firm, says IGZO-based displays made by Sharp are in at least some iPad Minis. Jennifer Colgrove, the lead analyst at Touch Display Research, also says Sharp is supplying IGZO displays for Apple tablets, but she is unsure whether they are in the Mini, the larger iPad Air, or both. Another Apple supplier, LG Display, can now mass-produce IGZO panels and is making them for its 55-inch OLED TV, Colgrove says.

By analyzing the power consumption of the iPad Air, Raymond Soneira, the founder of DisplayMate Technologies, found something unusual:  its display uses 57 percent less power than the previous generation of iPads. That tells him the display “simply can’t be amorphous silicon,” though it’s possible it uses LTPS and not IGZO.

Apple did not return messages seeking comment.

No matter how extensively the iPads are using IGZO, it’s clear the technology is finally gaining momentum after years of manufacturing challenges. Among other problems, it has been hard to produce transistors, which are made by depositing thin films of various materials, with the necessary uniformity.

Last month, however, semiconductor equipment maker Applied Materials announced the release of new manufacturing tools that the company claims will address the uniformity problem and other challenges. It says it is working with several unnamed companies to ramp up manufacturing capacity. The technology is compatible with glass panel sizes used in both tablets and televisions, says John Busch, general manager of a display group at Applied Materials.

6 comments. Share your thoughts »

Credit: Image courtesy of Sam Lionheart | iFixit

Tagged: Computing, Communications, Materials, displays, transistors, OLEDs

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »