Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

One potential use for the abundance of natural gas discovered in shale deposits across the United States—and potentially in other countries around the world—could be producing hydrogen for fuel-cell vehicles.

But such fuel cells remain expensive, in part because they use the precious metal platinum to facilitate the chemical reactions that produce electricity within the cell. A new method for quickly and cheaply depositing ultrathin layers of platinum, described today in the journal Science, might make it practical to reduce the amount of platinum used in fuel cells, thereby lowering the cost of fuel cells significantly.

Current methods for applying atom-thick layers of platinum are slow and complicated. The new approach is “incredibly cheap and easy to implement,” says Thomas Moffat, a metallurgy researcher at the National Institute of Standards and Technology, who led the work.

The approach might make it possible to manufacture fuel cells that have significantly thinner layers of platinum than what’s typically used now. GM, which is developing fuel cell vehicles, wouldn’t comment on how much platinum in used in its current fuel cell prototypes, but Charles Freese, general director of GM Fuel Cells, says: “This is an interesting approach that could eventually contribute to making fuel cells commercially viable.”

Moffat and colleagues at the National Institute of Science and Technology showed that platinum dissolved in a solution can be deposited on a gold surface in one-atom thick layers by alternately applying a positive and negative voltage.

The negative voltage causes two things: first, an atom-thick layer of platinum forms; and second, once those atoms are in place, a layer of hydrogen forms, thus preventing any more platinum from accumulating. Switching to a positive voltage then burns off the hydrogen, preparing the surface to receive another atom-thick layer of platinum when the negative voltage is applied again. In this way, the researchers can quickly and easily build layers of any desired atomic thickness.

The technique is orders of magnitude faster than one common method: depositing ultrathin layers of materials by first vaporizing the material that will be deposited, says Jay Switzer, professor of chemistry at Missouri University of Science and Technology, who was not involved with the project. It’s also simpler than another technique, which involves first depositing copper, and then using chemical reactions to replace that copper with platinum, he says.

The researchers have shown that the process works for depositing platinum, and say it might also work for materials such as nickel. The atomic control that the process affords could lead to new multi-metal catalysts. It could also give insights into how changing the thickness of a material, one atom at a time, changed its properties, Switzer says.

35 comments. Share your thoughts »

Credit: Dincer Gokcen | National Institute of Standards and Technology

Tagged: Energy, GM, hydrogen cars, fuel cell vehicles

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »