Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Hydrogen generator: Researchers used this setup to measure hydrogen production facilitated by novel nanoparticles.

Using the energy in sunlight together with water and air to make fuel—artificial photosynthesis—is a little closer thanks to an advance involving nanoscale crystals known as quantum dots.

Researchers have been working on artificial photosynthesis for many years (see “Sun + Water = Fuel”). One approach involves using particles that combine light-absorbing materials with catalysts that can split water. But the light-absorbing materials tend to deteriorate quickly in sunlight, rendering the approach impractical.

In the latest issue of the journal Science, researchers from the University of Rochester show that quantum dots not only absorb the light but also are far more durable than previous light-absorbing materials. The new approach also has the advantage of not requiring any precious metals, so it might be relatively cheap.

The new approach doesn’t solve all of the challenges with artificial photosynthesis. The proof-of-concept system developed by the Rochester team does only half of the water-splitting reaction—that is, it makes hydrogen, but not oxygen. What’s more, particle-based approaches like this one generate both hydrogen and oxygen in one container, and there’s a danger that they will interact and explode. Alternate approaches to photosynthesis that generate hydrogen and oxygen in separate containers are safer.

The remaining difficulties point to the need for efforts like the Department of Energy Innovation Hub at Caltech. The hub is designed to evaluate advances like this one in light of how they might work in a complete artificial photosynthesis system—and if such approaches look workable, to build and test prototype systems (see “Artificial Photosynthesis Effort Takes Root”).

16 comments. Share your thoughts »

Credit: Richard Eisenberg, University of Rochester

Tagged: Energy, artificial photosynthesis

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me