Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Track to the future: Movement of three users around Switzerland’s Lake Geneva are indicated with different symbols. GPS positions at the same time are indicated with the same color.

Beyond merely tracking where you’ve been and where you are, your smartphone might soon actually know where you are going—in part by recording what your friends do.

Researchers in the U.K. have come up with an algorithm that follows your own mobility patterns and adjusts for anomalies by factoring in the patterns of people in your social group (defined as people who are mutual contacts on each other’s smartphones).

The method is remarkably accurate. In a study on 200 people willing to be tracked, the system was, on average, less than 20 meters off when it predicted where any given person would be 24 hours later. The average error was 1,000 meters when the same system tried to predict a person’s direction using only that person’s past movements and not also those of his friends, says Mirco Musolesi, a computer scientist at the University of Birmingham who led the study. 

He cautions that the 200 participants might not reflect the general population—they all lived within 30 miles of Lausanne, Switzerland, and were mainly “students, researchers, and people that are fairly predictable anyway.” Even so, he says, the findings were noteworthy because “we are essentially exploiting the synchronized rhythm of the city” for greater predictive insights.

Although it is still a research prototype, the prediction algorithm, described in this paper, could be a boon to mobile network operators if it proves more widely applicable. These companies already possess such data and could use it to provide a sharper recommendations or ads for restaurants or shops near locations where you are likely to go. Musolesi’s group is planning to build a developer platform based on the algorithm.

This paper was part of a Nokia-sponsored Mobile Data Challenge, at which the Birmingham group won 3,000 euros for their work. Other papers from the contest can be found here. All the projects drew on the same smartphone dataset from the 200 volunteers, who agreed to have their location, communication patterns, app usage, and other metrics tracked over an 18-month period ending in 2011. 

To explain how your friends’ patterns can be used to refine predictions about you, Musolesi gave an example. If Susan goes from home to the gym every Tuesday at 7 p.m. following a certain route, a prediction algorithm based only on her past movements might be thrown off on a certain Tuesday when she makes a side trip to the mall. But by noticing that her close friends Joe and Bob are in their usual hangouts that day, Musolesi’s algorithm can determine that Susan is highly likely to go to the gym after finishing her mall errand. Habits and patterns of friends are highly correlated, meaning there will be enough noise-free information from the friends’ mobility patterns to extrapolate from them. Naturally, the predictions can be refined even more when two people often spend time with each other, but such “mutual information” is not required for a friend’s information to be useful. 

1 comment. Share your thoughts »

Credit: Mirco Musolesi

Tagged: Computing, Communications, smartphone, smartphones, GPS, nokia

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me