Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Magnetic hard disks will soon be able to store one terabit (a trillion bits) per square inch. Seagate has demonstrated that landmark storage density using a new magnetic recording method that can cram 10 terabits, and perhaps even more, onto every inch of a standard 3.5-inch disk. Disks made with current technology can hold about 3 terabytes.

The technology, called heat-assisted magnetic recording, involves heating the magnetic regions on a disk that hold individual data bits, allowing those regions to be made tinier. Seagate says the method promises to keep increasing storage density, and it could lead to 60-terabyte hard drives.

“One of the most exciting things about heat-assisted magnetic recording is that it’s in its infancy,” says Ed Gage, principal technologist of heads and media R&D at Seagate. The company is targeting 2015 for its first commercial product featuring the technology.

Today’s hard disks are made of magnetic cobalt-platinum alloys. Each bit is stored on a tiny area with a magnetic field pointing in one of two opposite directions, denoting a binary digit 1 or 0. The smaller these magnetized areas are, the higher the density of the disk. When the areas get down to 25 nanometers to a square side (corresponding to 1 terabit per square inch), they become unstable, meaning that a small amount of heat can make them flip their magnetic field direction.

More-stable magnetic materials, such as iron-platinum alloys, are available, says Mark Kryder, an electrical and computer engineering professor at Carnegie Mellon University and previous CTO of Seagate. However, to write on them requires magnetic fields much larger than those conventional recording heads can produce. If, however, you heat the material, smaller magnetic fields will work. So heat-assisted recording involves heating iron-platinum disks with a short laser pulse when the head applies a magnetic field to write data.

5 comments. Share your thoughts »

Tagged: Computing, Materials, materials, memory, data storage

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me