Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

After being diagnosed, Snyder cleaned up his diet and stepped up his exercise routine, losing weight and bringing markers of the disease back under control.

A close reading of his body’s data suggested to Snyder that his diabetes could have been triggered by a “pretty nasty cold” that forced him to skip work for a few days. 

Betul Hatipoglu, an endocrinologist at the Cleveland Clinic, doesn’t think any specific virus caused Snyder’s diabetes. But she says the coincident timing supports the idea that stress can unmask underlying vulnerabilities. “It could have been any other kind of stress that turned on that event,” she says. “If you carry these genes, a big stress like a huge car accident could turn that on. The body uses many pathways to respond to stress.”

Eng, the geneticist, agrees that the power of this kind of multilayer analysis is the insight it offers into gene-environment interactions—how the environment “talks” to DNA. “It was caught in the act by modern technology,” she says.

The challenge for expanding this kind of analysis beyond the lab, Eng says, will be finding people who can interpret all this physiologic data and make it meaningful. Data analyzed incorrectly could be dangerous, she says; data presented badly could stoke unnecessary fears. “The people who are very facile at interpreting [information] to the patient are very few and far between.”

Snyder admits that integrating 40,000 pieces of data collected over irregular periods “wasn’t so trivial,” which is why he and his collaborators hope to narrow the data down to the most telling markers. His next research goal, he says, is to do a similar long-term analysis of 250 people who are at elevated risk for diabetes, so he can watch the disease develop.

He is also doing preliminary research on people with other common diseases, such as asthma, and with complex disorders like schizophrenia and autism. He wants to add measures that can detect changes related to aging and environmental exposure to toxins.

Eventually, Synder says, he hopes people can analyze a full range of molecular information at birth and then again every six months to catch medical warning flags and make lifestyle or medication changes before problems develop. 

5 comments. Share your thoughts »

Credit: Stanford University School of Medicine

Tagged: Biomedicine, diagnostics, self tracking, DNA sequenced, diabetes treatment

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me