Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Carriers have already been rapidly installing a related indoor technology, called femtocells, to serve dead spots or crowded areas inside buildings. AT&T alone has several hundred thousand Cisco-made femtocells around the United States. (The amalgamation of all these networking technologies—traditional towers serving what are known as macro cells, femtocells, small cells, and Wi-Fi networks—are known as heterogeneous networks.)

 “These smaller cells could possibly meet the data demands that we are facing with smart-phone applications,” says Narayan Mandayam, an electrical engineering professor at the Winlab, the wireless research lab at Rutgers University. “We have to do something other than what we are doing now. The carriers are already operating at a point where they are not able to meet their demands.”

The small-cell technology also answers practical problems. The traditional way of adding cellular network capacity is to do so-called cell-splitting. For example, if a given region is covered by 10 macro cells, carriers might aim to erect 10 more towers and then divide the area into 20 macro cells. But this can require costly real-estate investments and zoning battles. And from a technical perspective, it creates more radio interference at cell boundaries. By contrast, Alcatel-Lucent has engineered the light radio cube to coexist with the macro cell without interference.  

The proliferation of smart phones has rapidly put the industry on crisis footing. Lately, the carriers have begun implementing data throttling. AT&T has just instituted a change to its throttling policies, now saying customers with unlimited data plans in its 3G network will face throttling only if they download three gigabytes in one month.

Part of the answer to congestion will come from new TV spectrum that is expected to be auctioned in two years under a recent deal in Washington, D.C. But adding smaller cells, and managing them smartly, will be another key solution.

“The light radio cube should help in reducing congestion,” says Yingying Chen, a computer scientist who specializes in wireless networking at the Stevens Institute of Technology in Hoboken, New Jersey. “You need something that is being deployed other than new cell towers.”

0 comments about this story. Start the discussion »

Credit: Alcatel-Lucent

Tagged: Communications, mobile devices, femtocells, transmitter, data communications

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me