Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Battery packs can cost more than $10,000, which is one of the biggest reasons electric cars cost more than conventional gas-powered cars.

Envia, a startup funded by GM and the U.S. government’s Advanced Research Projects Agency for Energy (ARPA-E), says it has built batteries that store more than twice as much energy as the ones in electric cars now. If the technology comes to fruition, it could halve the cost of batteries—the most expensive part on an electric vehicle.

Much work remains, however, before the batteries can be used in commercial electric vehicles. Among other things, the number of times they can be charged and recharged must be more than doubled.

The technology was highlighted at the annual ARPA-E summit in Washington, D.C., this week, in part to demonstrate the progress in energy technology being made by the Department of Energy, which oversees ARPA-E. The DOE has come under fire after giving loan guarantees to some companies that later declared bankruptcy.

Envia’s technology is based on work originating in the DOE’s Argonne National Lab, which identified a material with a novel microscopic structure that could help improve the storage capacity of one of the battery electrodes.

GM and battery maker LG Chem, which is using some aspects of the technology in the Chevrolet Volt, may incorporate other technology from Argonne in batteries for the next generation of the car. Envia modified the original Argonne technology to get higher energy densities.

Using the Argonne material as a starting point, the researchers systematically tested variations of the material design to help increase its practical operating voltage (a powerful way to improve energy density) and to deal with a known issue with the material: a tendency of one of its components, manganese, to move out of the electrode and dissolve in the battery electrolyte, reducing storage capacity over time. To achieve these goals, the researchers added trace elements to the material and developed coatings to keep the manganese from escaping.

41 comments. Share your thoughts »

Tagged: Energy, batteries, electric cars, ARPA-E

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me