Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

User interface: The U.S. government could require cars to communicate with one another via radio. Now car companies are testing how to relay information to drivers. Above, dashboard warnings from GM tell drivers about nearby cars, while a system from Ford uses a light in the rear-view mirror to warn a driver not to pass.

While cars will have to broadcast V2V information in a standardized way, automakers will be free to develop their own safety applications and warning indicators. There’s an art to designing these systems, and each of the eight participating manufacturers has done it differently. For example, if you’re preparing to cross an intersection and an approaching car is about to T-bone you from your left, the Acura TL shows an amber warning message above the speedometer. By contrast, a system developed by FOR warns you with a red light that flicks from left to right across your windshield and, to make sure you get the message, also vibrates your seat from left to right.

“We have found the most effective warning strategies are both semantic/acoustic and haptic—typically, a combination of both,” says Brian Lathrop, team leader for human-machine interface at Volkswagen of America’s Electronic Research Laboratory. He says drivers react faster to a vibration or a recorded voice saying “Brake!” than to a light on the dashboard. That may be partly because drivers’ eyes are already taking in a lot of information, while the load on the auditory system is lighter.

Indeed, during the tests, all the systems used sound to signal the most critical alerts, such as warnings of an impending collision. Less important information—say, about a car approaching in the next lane—was typically displayed on the dashboard, windshield, or side-view mirrors. A Kia Sonata tested in the clinic alerted a driver “do not change lanes” by showing a white icon of a nearby car on the navigation display. When a collision was imminent, the icon flashed red and was accompanied by rapid beeping.

With the consumer tests now complete, the project’s next phase is a yearlong field test in Ann Arbor, Michigan, where around 3,000 cars, trucks, and buses will be outfitted with V2V safety systems.

The DOT plans to decide whether to require V2V systems in 2013—and it wants plenty of data to back up its decision. If the agency does mandate that automakers begin installing V2V systems in all new vehicles, the first cars with the technology would arrive in showrooms around 2018. Some automakers are hoping the government will step in, since the more cars are equipped with vehicle-to-vehicle communications, the more effective such systems will be.

“If only a few cars around you have this technology, it’s not going to help much in improving safety,” says GM’s Boules. “A mandate would definitely expedite the rollout.”

10 comments. Share your thoughts »

Credits: Susan Kuchinskas, GM, Ford

Tagged: Business, Business Impact, business

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me