Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The photovoltaic effect was first observed by a Frenchman, Alexandre-Edmond Becquerel, in 1839. Many others improved on Becquerel’s research, such as Willoughby Smith in the United Kingdom. Ten years later, American Charles Fritts created the first working solar cell. Then, in 1887, German scientist Heinrich Hertz discovered the photoelectric effect. That work was further improved upon by Albert Einstein, who published a paper on the photoelectric effect that ultimately resulted in the award of the Nobel Prize in Physics and provided the theoretical basis for the understanding of photovoltaics.

The space race of the late 20th century financed extraordinary PV research, spurring a dramatic jump in the laboratory efficiencies of crystalline silicon solar cells. Russia’s Sputnik 3 and America’s Vanguard 1—satellites launched in 1958—were powered by solar cells. Soon after, solar research institutions around the world began to invest and develop proprietary cell designs to explore the theoretical limits of photovoltaics. For example, in 1985, our team at the University of New South Wales’ (UNSW) School of Photovoltaic and Renewable Energy Engineering (SPREE), in Sydney, Australia, created the first silicon solar cell design to break the 20 percent efficiency threshold. In 1988, Stanford University’s rear point contact cell demonstrated 22 percent efficiency. The next major improvement, demonstrated by the PERL cell from UNSW, produced the first 24 percent efficient silicon cell in 1994, and holds the current world record of 25 percent efficiency.

All of these laboratory accomplishments are critical to our understanding of photovoltaics. But in the laboratory alone, they aren’t much use to humanity. The most exciting part of our work has being seeing the laboratory technology effectively commercialized and making its way into the mainstream market.

This commercialization of solar technology has been equally global.

In 1954, Bell Labs in the United States made PV technology marketable for the first time, with up to 6 percent efficient solar cells that cost roughly $250 per watt. Ten years later, Sharp Corporation in Japan produced one of the first viable solar modules for terrestrial applications. Since then, global competition spurred decades of efficiency improvements and cost reductions across a variety of PV technologies and industry segments. SunPower, based in the U.S., was the first company to effectively commercialize Stanford’s rear point contact cell technology, which set several world records for commercial monocrystalline silicon module efficiency. Suntech, based in China, was the first company to effectively commercialize UNSW’s PERL technology, which immediately set a world record for multicrystalline silicon module efficiency.

As a result of global competition, the cost of a solar module is now about $1 per watt. It’s almost futile to generalize as to which regions contributed most to a certain industry, as there’s so much overlap, and any delineation invites dozens of important exceptions. Many Germany-based manufacturing companies have created great high-precision equipment for mass-producing solar wafers, cells, and modules. Many U.S. companies have played a leading role in driving down the price of silicon—the key ingredient for PV—to now less than $40 per kilogram. China-based companies, several started by my former UNSW students, have done an incredible job developing innovative, low-cost methods for fabricating high-quality solar cells and modules.

Most importantly, all of these companies and countries rely heavily on each other to succeed. Together, they represent a formidable force that has relentlessly driven down the cost of solar electricity with remarkable consistency for more than 30 years. In isolation, they’re relatively powerless.

Just like the sun’s power, the solar industry belongs to us all. Now, the solar industry needs to rise above narrow-mindedness, and in one voice, oppose protectionism in the solar industry. We must remain unified in our commitment to making solar electricity affordable for everyone, everywhere.

Martin Green is the executive research director at the Photovoltaics Centre of Excellence at the University of New South Wales in Australia. Over the past few decades, his lab has made the world’s most efficient silicon solar cells, and his students have gone on to found, or hold key positions at, China’s top solar panel manufacturers, including the world’s largest, Suntech Power.

31 comments. Share your thoughts »

Credit: Brian Bailey

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me