Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

By precisely designing the shape of the interior of the furnace, the researchers can control exactly where the light is focused, ensuring the wafers are heated evenly. It’s not enough to make sure the wafer is evenly illuminated—the edges have to receive more light because they lose heat more rapidly than the rest of the wafer.

The process reduces thermal stress on the wafers, and it allows for precise control over the chemical reactions that heating enables. Precise control of the rates and timing of the heating can also improve the electrical contacts on the solar cell, improving its efficiency. And it makes it practical to introduce an oxidation step. Oxidation has typically been used by only a few manufacturers for high-end solar cells, but the new process would make it cheaper and thus allow more manufacturers to use it.

Sopori says NREL has developed processes that take better advantage of photonic effects than the rapid thermal processing furnaces. As photons interact with the silicon, they can cause deleterious impurities such as iron to move out of the material, while keeping advantageous ones such as boron, which is needed for the solar cell to perform properly.

The researchers haven’t yet realized the complete four percentage point improvement in efficiency in part because the new processing steps aren’t all compatible with other steps in conventional manufacturing. Sopori says they are working to modify the other steps to take full advantage of the optical furnace.

NREL is also working with Advanced Optical Systems to develop a machine that can process not just one wafer at a time, as with the lab version, but up to 2,000. Such high throughput will be necessary if the furnaces are to compete with conventional ones, which are cheap to operate.

16 comments. Share your thoughts »

Credit: NREL/Dennis Schroeder

Tagged: Energy, Materials, renewable energy, solar power, solar cells, silicon wafers

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »