Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

WiCS is initially being tested with conventional pacemakers—with both devices implanted—as a way to provide a form of treatment for chronic heart failure called cardiac resynchronization therapy (CRT), where chambers on both sides of the heart need to be paced. Because it is not safe to place a lead permanently in the femoral aorta—the only main entry point to the left ventricle—surgeons normally have to painstakingly thread one through blood vessels running on the outside of the heart in order to reach the left side.

The WiCS system avoids this by embedding the ultrasonic receiver in the left ventricle. This is the first time that physicians can choose where in the heart this CRT therapy can be delivered, which means it can be optimized, says Skjefte.

Lead placement is an issue with CRT, says Andrew Grace, a consultant cardiologist at Papworth Hospital in Cambridge, U.K. “If one could place the pulse where you wanted in the heart, that would be good. If it is made to reliably work, then this will be an advance,” he says.

This is not the first leadless cardiac device. Grace was one of the first cardiologists to try out a device called the subcutaneous implantable cardioverter-defibrillator (S-ICD), made by Cameron Health of San Clemente, California. The S-ICD became available in 2009. But although it doesn’t require the placement of leads inside the heart (instead it uses an external one to deliver shocks), it can only deliver the type of powerful shocks that are used for defibrillation, so it’s not capable of pacing. “But other companies like Medtronic are also developing systems that have no leads,” says Grace.

EBR Systems has not said how many patients have so far been implanted with the device, or when it will be approved for clinical use. “Our initial clinical sites are in the Netherlands, Germany, and Switzerland. We have successfully treated heart-failure patients who were previously left with few options,” he says.

0 comments about this story. Start the discussion »

Tagged: Computing, Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »