Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Chinese solar-panel manufacturers dominate the industry, but a new way of making an exotic type of crystalline silicon might benefit solar companies outside of China that have designs that take advantage of the material.

GT Advanced Technologies, one of world’s biggest suppliers of furnaces for turning silicon into large crystalline cubes that can then be sliced to make wafers for solar cells, recently announced two advanced technologies for making crystalline silicon. The new approaches significantly lower the cost of making high-end crystalline silicon for highly efficient solar cells.

The first technology, which GT calls Monocast, can be applied as a retrofit to existing furnaces, making it possible to produce monocrystalline silicon using the same equipment now used to make lower quality multicrystalline silicon. It will be available early next year. Several other manufacturers are developing similar technology.

It’s the second technology, which the company calls HiCz, that could have a bigger long-term impact. It cuts the cost of making a type of monocrystalline silicon that is leavened with trace amounts of phosphorous, which further boosts a panel’s efficiency. This type of silicon is currently used in only 10 percent of solar panels because of its high cost, but could gain a bigger share of the market as a result of the cost savings (up to 40 percent) from GT’s technology. The technology will be available next year.

A standard solar panel, made of multicrystalline silicon, might generate 230 watts in full sunlight. A panel the same size made of monocrystalline silicon could generate 245 watts. But phosphorous-doped monocrystalline silicon (also called n-type monocrystalline) enables a type of solar panel that generates 320 watts, a huge leap in performance.

Most Chinese solar manufacturers have focused on multicrystalline silicon solar panels. Companies such as U.S.-based Sunpower have focused on the advanced monocrystalline panels, and have designed cells to exploit its properties. Such companies will benefit as the HiCz technique developed by GT Advanced Technologies becomes more common.

14 comments. Share your thoughts »

Credit: GT Advanced Technologies

Tagged: Energy, energy, renewable energy, China, silicon, solar panels, N-type, wafers, monocrystalline

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me