Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Software that enabled a utility in Washington to cut power consumption by up to 50 percent by more intelligently managing the delivery of electricity to homes and businesses will soon get a much bigger test.

This small demonstration is part of a project that will ultimately attempt to knit together aging, fragmented grid infrastructure across five states and 11 utilities to make way for electric cars and renewable energy. The project will involve 95 smaller efforts to integrate wind power, store power from the grid, accommodate electric vehicle charging, and establish “microgrids” that can survive on their own in the event of a power outage.

The software for the $178-million project is nearly complete, and the system will be up and running by this time next year, says Ron Ambrosio, the global research leader for the energy and utilities industry at IBM, one of several companies and institutions involved. The project is one of 16 smart grid demonstrations funded in part by the 2009 Recovery Act.

Some of the technology was first demonstrated from 2005 to 2007 on Washington state’s Olympic Peninsula. The technology allowed utilities to communicate with smart thermostats and other equipment at residences, reducing peak electricity demand and responding to fluctuations in supply from intermittent resources such as wind turbines.

Ordinarily, such a system would depend on changes in regulations to allow utilities to charge residential customers different prices for electricity depending on demand. But the new technology, developed by IBM, the Pacific Northwest National Laboratory, and others, makes such real-time pricing unnecessary.

The approach keeps electricity rates flat, but gives customers rebates on their power bills in exchange for having thermostats and other smart devices hooked up to communicate with the utility. The utility sends signals to the smart thermostats and appliances about how much it currently costs the utility to provide it electricity. Then, based on the preferences entered by the consumer, the smart systems in a home send signals back to the utility about how much power they will use. If costs are high, for example, the thermostat might signal that it will turn up the temperature to reduce the power consumption of the air conditioner.

2 comments. Share your thoughts »

Credit: Pacific Northwest National Lab

Tagged: Energy, IBM, smart grid, electric grid

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me