Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

A simple trick could improve the ability of advanced ultracapacitors, or supercapacitors, to store charge. The technique, developed by Stanford University researchers, could enable the use of new types of nanostructured electrode materials that store more energy.

While ultracapacitors provide quick bursts of power and can be recharged many more times than batteries without losing their storage capacity, they can store only a tenth as much energy as batteries, which limits their applications. To improve their energy density, researchers have focused on the use of electrode materials with greater surface area—such as graphene and carbon nanotubes—which can hold more charge-carrying ions.

The Stanford team, led by Yi Cui and Zhenan Bao, used composite electrodes made of graphene and manganese oxide. Manganese oxide is considered an attractive electrode material because, “one, manganese is abundant so it’s very low cost,” Cui says. “It also has high theoretical capacity to store ions for supercapacitors.” However, in the past its use has been hindered by its low conductivity, which makes conveying ions in and out of the material difficult.

The researchers dipped the composite electrodes into either a carbon nanotube solution or a conductive polymer solution. The coating improves the electrodes’ conductivity and hence their capacitance—their ability to store charge—by 20 percent and 45 percent respectively. The researchers report their work in a paper that appeared online in the journal Nano Letters.

“This is an important advancement,” says Lu-Chang Qin, a physics professor at the University of North Carolina at Chapel Hill, who has recently developed similar graphene–manganese oxide electrodes. These results “promise hopes for a new generation of supercapacitors,” Qin says. However, he points out that the Stanford team has yet to measure the energy density of its new electrodes. Qin has collaborated with Japanese researchers to make electrodes from carbon nanotube graphene. These have an energy density of 155 watt-hours per kilogram, comparable with that of nickel–metal hydride batteries.

0 comments about this story. Start the discussion »

Credit: Nano Letters

Tagged: Energy, energy, batteries, ultracapacitors

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me