Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

It is possible to use a catalytic process developed by German researchers nearly a century ago called Fischer Tropsch to turn methane into carbon monoxide and water, and then convert the so-called syngas to liquid chemicals. The process, however, requires high temperature and pressures, making it expensive to build and operate—and it produces a wide variety of compounds, including ones far less valuable than ethylene. Using a modified version of the Fischer Tropsch technology, Shell is building a roughly $20 billion gas-to-liquids facility in Qatar that will make various compounds from that country’s vast supplies of natural gas.

The chemistry for directly making ethylene from methane has eluded researchers in part because of the difficulty of getting the reaction to stop at ethylene, and not produce carbon dioxide. Siluria believes it can overcome the challenge because of the availability of new chemical discovery-and-synthesis tools. Top among these is the use of virus-based templates, a technology developed by Angela Belcher, a professor at MIT and member of Siluria’s board of directors, that guides the growth of nanowire catalysts made of inorganic crystals. After the template is burned away, the researchers are left with structure of the inorganic material with a high surface area—perfect candidates for high catalytic activity. They then use high-throughput screening methods to rapidly try and find any of the nanowire structures with the desirable catalytic activities.

Siluria says it has received the additional investment because it now has multiple catalysts that work in a “commercially viable realm” of relatively low temperatures and pressures. Erik Scher, Siluria’s vice president of R&D, says the company’s candidate catalysts will work with conventional types of reactors and reactor designs, providing manufacturers “with a minimal risk of scale-up. They won’t have to invent new types of reactors.”

2 comments. Share your thoughts »

Tagged: Energy, natural gas, fuel, Siluria, chemical synthesis

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me