Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A new type of diagnostic could let hospital laboratories identify the presence of dangerous bacteria up to five times faster than conventional methods. The test could reduce unnecessary antibiotic use and provide more reliable water-quality test results. The key to the process is a membrane with nanosized pores, which enable rapid growth and identification of live organisms.

Current methods of identifying bacterial infections in hospitals seem almost antiquated: Swab, rub on petri dish filled with agar, and wait. Some bacteria can take 48 hours or more to grow into visible colonies. But the new technology, developed by Hubbard, Ohio-based Nanologix, speeds up the process. Bacteria, and potentially viruses, move through the pores of its membrane, and grow there. Then the membrane is plucked off the agar and placed on a staining plate.

“People knew for decades that microcolonies would be present in culture, but there was no way to transfer them or stain them in a way to make them visible,” says Nanologix CEO Bret Barnhizer. But the company’s technology—“bionanopore” membranes and “bionanofilters”—is sensitive enough to detect a single cell. And when the nanofilter is saturated with antibodies specific to a particular bacteria or virus, it can quickly indicate whether a particular offender is present.

The first test of the Nanologix system has been completed by a group of researchers at the University of Texas Health Sciences Center on a bacterium known as group B streptococcus. Also known as GBS, it can cause feeding, breathing, and other problems in a newborn baby if its mother is infected with it at the time of childbirth. Because of this, most pregnant women are tested for GBS about a month before their due date, with a culture test that yields results in two to three days. If the results are positive, antibiotics can eliminate the infection before the baby is born.

But if a woman arrives at a hospital in labor and has never been tested for GBS, she’s assessed for GBS risk and often given large doses of broad-spectrum antibiotics, just in case. Because the risk assessment basically consists of the physician’s best guess, some patients who need the antibiotics won’t get them, and some who don’t need them will.  

A study published online this month in the American Journal of Perinatology by the University of Texas researchers shows that the Nanologix test can yield reliable results in as few as four hours. It’s not fast enough to prevent antibiotic administration to untested women already in labor, but it’s fast enough to know whether their new babies should be monitored for signs of infection. “It would be great to have a faster-turnaround test,” says Kristin Brigger, a Houston private-practice obstetrician and gynecologist who was not involved in the research. “For patients in the academic setting, patients without good prenatal care and high risk of preterm labor, it would be really good.”

3 comments. Share your thoughts »

Credit: Nanologix

Tagged: Biomedicine, diagnostics, bacteria, nanopore

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me