Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Mobile carriers are building new, higher-bandwidth networks in many areas, but something like DIDO could add even more capacity, says Perlman. “Urban areas are the worst,” he says. “New York is absolutely dying. You just can’t get any 3G data because there’s not enough bandwidth to divide up.”

If a DIDO network was rolled out to supplement today’s cellular ones, it would use many small towers rather than the large ones typically used now. “You would rely on lots of little towers scattered about that will work together to target you with your own signal,” says Perlman. “They could be on light poles, on top of buildings, in businesses.” Those small base stations would be under the control of DIDO servers constantly calculating how to make signals that interfere in just the right way. Those signals could be altered to deal with changing radio conditions and transmitter availability as gadgets moved, even when users were driving.

The DIDO system that Perlman is testing in Texas sends signals more than 30 miles. Perlman hopes this will catch the eye of telecom companies required by federal law to provide broadband Internet to isolated communities.

“DIDO looks very promising,” says Bhaskar Krishnamachari, a professor at the University of Southern California, who develops techniques to make wireless networks more efficient. “I’ve seen enough similar suggestions in the academic world to believe that this can certainly work,” he says. “Their demonstration sounds significantly beyond anything like this before.”

However, relying so heavily on cloud processing to keep a network functioning is an untested idea, notes Krishnamachari, and it may prove challenging to deploy DIDO in areas with many users.

Furthermore, even as DIDO exploits interference, it is still limited by it, notes Krishnamachari: “If many users are close together, then it is more likely that the channels for the multiple signals will look similar.” This could pose a problem in urban situations (for example, in a busy coffee shop), although Perlman says that with enough base stations, it should be possible to target devices in close proximity.

Jay Jayasimha, chief technology officer at Dialogic, which offers technology that speeds up the wired connections that link cell towers to the Internet, says Perlman’s idea makes sense and will certainly be taken seriously by telecom networks. “They need new ideas, because the problem of wireless data demand is only going to get worse,” he says. “This idea is trying to solve the right part of the problem.”

Jayasimha notes that DIDO will need to be compatible with existing technology if it is to be viable. “There needs to be a migration path,” he says.

Perlman says DIDO could initially be rolled out parallel to existing networks in areas troubled by overwhelming demand. Cell phones would require an additional radio chip to tap into such a network, though.

1 comment. Share your thoughts »

Tagged: Communications

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me