Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The dark-fiber test bed provides a way to test new hardware, such as devices like optical routers, which combine optical and electronic components. It could also be useful for security researchers. “It’s very hard to do ‘deep-packet inspection’ at 100 Gbps,” says Cotter, referring to a technique typically used to check for malicious network traffic. He adds that it’s important to anticipate what could happen if spammers or malicious hackers got access to very high bandwidth, and develop ways to defend against that.

Cotter also believes the new networks “open up a whole new area of research” into the power efficiency of network devices. He wants to collect data on real-time power consumption and correlate it with traffic patterns to see when the network itself is becoming an energy guzzler. Data centers have received a lot of attention for the energy they consume, Cotter says, but the energy used to move data around the world is also important.

Lachlan Andrew, an ARC Future Fellow at the Centre for Advanced Internet Architectures at Swinburne University of Technology, says the 100-gigabit-per-second network “will be very useful for people testing end-to-end ‘application layer’ protocols.” That network won’t do much for researchers who want to investigate the deep structure of the network or the hardware used to operate it, but it will be good for those who want to test software in high-bandwidth conditions, Andrew says.

The dark-fiber network, on the other hand, lets researchers investigate networks at any level they want. However, it requires researchers to install their own equipment at many points inside the network to “light up the fiber.” Andrew says that’s a great opportunity for electrical engineers working on networking hardware, but might be an expensive prospect for others.

The new networks “will provide an environment that is realistic, truly state-of-the-art, and flexible for experimentation,” says Steven Low, a professor of computer science and electrical engineering at Caltech who researches network architecture. “Such an environment will be critical for cutting-edge applied networking research.”

Vietzke says construction of both the 100-gigabit-per-second network and the dark-fiber research test bed are well underway. The first stage will be completed by the end of the year. The next stage, which will extend the network to new locations, will be completed within a year.

It’s not clear exactly what will come out of access to the networks, and Vietzke says that’s half the point. “I don’t think you could have imagined that the bandwidth-rich environment [typically available at universities and research centers] could have transformed global politics, commerce, and economics as much as it has in recent years,” he says. He points not only to scientific advances but to dorm-room inventions such as Facebook and Napster. There’s every reason, he says, to expect the next generation of the Internet to be just as disruptive.

0 comments about this story. Start the discussion »

Credit: ESNet

Tagged: Communications, Web, security, networks, energy efficiency, hardware, Internet protocols

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me