Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Barron and colleagues first demonstrated amplification a few years ago, but it wasn’t very efficient. In a paper published online in June in the journal Nano Letters, they described a combination of the right catalysts and growth conditions that would ensure that every single nanotube would be amplified. Previously they’d assumed these conditions should be identical to the ones used to make the starting batch of nanotubes, but it didn’t work very well. Barron says they have now found the conditions to make amplification work.

The Rice researchers are using the amplification process to accumulate enough pure metallic nanotubes to make a fiber of the type that would be used to make an electrical transmission line. They’ve made long, conductive nanotube fibers in the past using a spinning process also developed at Rice, but they’ve had to use impure nanotubes to make any great length of the material.

Aaron Franklin, a researcher at IBM’s Watson Research Center, says the new study probably doesn’t “reveal the golden ticket for achieving high volumes of metallic-only tubes.” The amplification process is still not producing very large quantities of the material, Franklin notes.

While the Rice group continues to work on amplification, other researchers are exploring alternative ways of making pure nanotubes in quantity. Mark Hersam, a professor of chemistry at Northwestern University, developed what is now one of the most commonly used separation methods. He founded a company called NanoIntegris to sell pure nanotubes. He says ramping up production “is now essentially an industrial optimization exercise.”

0 comments about this story. Start the discussion »

Credit: ACS/Nano Letters

Tagged: Energy, Materials, energy, nanotechnology, carbon nanotubes, nanomaterials, electric grid, nanomanufacturing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me