Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Earlier this year, the Cambridge-based biotech firm Genzyme announced the latest in a series of manufacturing delays for Fabrazyme, a biological drug that treats a rare genetic disorder, after one lot of the drug was found to be contaminated. The news followed a more severe setback in 2009, when both Fabrazyme and another drug were contaminated with a virus; the problem closed the manufacturing plant and created major shortages.

Genzyme isn’t alone in these issues. Biologics—drugs made through a biological process rather than chemical synthesis, a category that includes recombinant proteins, vaccines, and antibodies—are the fastest-growing segment of the pharmaceutical industry. In 2008, nearly 30 percent of revenue from the top 100 drugs came from biologics, a figure that is expected to rise to 50 percent by 2014.

But the same factors that make biologics powerful drugs also make them a challenge to manufacture. They typically mimic proteins and other molecules found in living organisms and can target harmful entities, such as some cancer cells, with great accuracy; many of the most promising new drugs for cancer and other diseases fall into this class. Biologics tend to be larger, more complex molecules than drugs synthesized through chemical reactions, which adds to production challenges and makes them costly. A single dose of some biologic therapies can cost $10,000.

Biologics are most often produced by cells growing in a bioreactor, a vat designed to maintain carefully calibrated conditions. Because the cells are alive, “every time you run a reactor, the result can be a bit different,” says Chris Love, a chemical engineer who is part of MIT’s Biomanufacturing Research Program. This inherent variability makes the process both expensive and unpredictable.

Another issue is that for biologics to win approval from regulatory agencies, it’s not enough for the drug itself to be approved, as is the case with small-molecule drugs; the manufacturing procedure must be approved as well. While this is important for safety’s sake, it also makes it costly to change the production process after it’s been approved, and that discourages innovation. “By the time the drug is in the marketplace, you are working with old technology,” says Charles Cooney, a chemical engineer at MIT. “You have to lock in the technology many years before launch of a commercial product.”

And even when developing experimental drugs, makers tend to stick with methods that have previously been proved safe. As a result, new advances in systems biology and microtechnology have not been integrated into biomanufacturing, says Love.

0 comments about this story. Start the discussion »

Credits: Conrad Warre/TR

Tagged: Business, Business Impact, Advanced Manufacturing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me