Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

In addition to its safety features, R2 is more versatile than traditional factory robots at gripping things. Each of its dexterous, humanlike fingers can hold up to five pounds, and the arm can hold around 20 pounds in a variety of positions: the R2 can dial an iPhone and lift a barbell. The series elastic actuators allow R2 to feel the force of objects, rather than only calculate their position. This is how a human does it: when we snap a battery backing onto a phone, for example, we’re guided by the feel of the forces we exert on the phone.

“Traditionally, industrial robots have to do things by very precise position control. Once you have force control, you can be less precise and operate like a human. Then it’s much easier to program the robot to do assembly,” says Brooks. Marty Linn, principal robotic engineer for GM, predicts that technology from the R2 hand and arm will likely be part of the next wave of assembly-line robots. The versatility of its grip means the robot could manipulate many different objects with the same hand, which would make it faster at adapting to a new task. “We really want our assembly processes to be very flexible,” Linn says.

GM uses about 2,500 new robots every year, and has around 20,000 to 25,000 robots in factories worldwide, according to Linn. The new generation of robots would not replace these cumbersome giants, but do smaller, more sophisticated tasks, such as handling the screws, handles, and airbag and blind-spot warning sensors that go into the car doors. That kind of work is “ergonomically challenging” for humans, Linn says.

However, Bourne says, it might be 20 years before we see robots working with people, because it will take that long to create and verify safety standards. “The barrier of entry is mostly in the liability,” he says.

3 comments. Share your thoughts »

Credit: NASA
Video by NASA and GM

Tagged: Business, Business Impact, Robotics, robotics, Advanced Manufacturing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me